【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對(duì)角線AC繞對(duì)角線交點(diǎn)O旋轉(zhuǎn),分別交邊AD、BC于點(diǎn)E、F,點(diǎn)P是邊DC上的一個(gè)動(dòng)點(diǎn),且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運(yùn)動(dòng)過(guò)程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請(qǐng)說(shuō)明理由.
【答案】(1)PC=3﹣x,F(xiàn)C=x;(2)當(dāng)x=時(shí),△PEF面積的最小值為;(3)PE⊥PF不成立理由見(jiàn)解析.
【解析】
(1)由矩形的性質(zhì)可得AD∥BC,DC=AB=3,AO=CO,可證△AEO≌△CFO,可得AE=CF=x,由DP=AE=x,可得PC=3﹣x;
(2)由S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,可得S△EFP=x2﹣x+6=(x﹣)2+,根據(jù)二次函數(shù)的性質(zhì)可求△PEF面積的最小值;
(3)若PE⊥PF,則可證△DPE≌△CFP,可得DE=CP,即3﹣x=4﹣x,方程無(wú)解,則不存在x的值使PE⊥PF.
(1)∵四邊形ABCD是矩形
∴AD∥BC,DC=AB=3,AO=CO
∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF
∴△AEO≌△CFO(ASA)
∴AE=CF
∵AE=x,且DP=AE
∴DP=x,CF=x,DE=4﹣x,
∴CP=3﹣x,PC=CD﹣DP=3﹣x
故答案為:3﹣x,x
(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,
∴S△EFP=
=x2﹣x+6=(x﹣)2+
∴當(dāng)x=時(shí),△PEF面積的最小值為.
(3)不成立
理由如下:若PE⊥PF,則∠EPD+∠FPC=90°
又∵∠EPD+∠DEP=90°
∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°
∴△DPE≌△CFP(AAS)
∴DE=CP
∴3﹣x=4﹣x
則方程無(wú)解,
∴不存在x的值使PE⊥PF,
即PE⊥PF不成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α度(30<α<150)得到△AB′C′,B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B′、C′,連接BC′,BC與AC、AB′相交于點(diǎn)E、F.
(1)當(dāng)α=70時(shí),∠ABC′=_____°,∠ACB′=______°.
(2)求證:BC′∥CB′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點(diǎn)A(0,2),對(duì)稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對(duì)稱軸左側(cè),BC=6.
(1)求此拋物線的解析式.
(2)點(diǎn)P在x軸上,直線CP將△ABC面積分成2:3兩部分,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+x+2與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.
(1)試求A,B,C的坐標(biāo);
(2)將△ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到△BAD.3
①求點(diǎn)D的坐標(biāo);
②判斷四邊形ADBC的形狀,并說(shuō)明理由;
(3)在該拋物線對(duì)稱軸上是否存在點(diǎn)P,使△BMP與△BAD相似?若存在,請(qǐng)直接寫(xiě)出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠C=72°,△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C1落在邊AC上時(shí),設(shè)AC的對(duì)應(yīng)邊A1C1與AB的交點(diǎn)為E,則∠BEC1=___°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操場(chǎng)上有三根測(cè)桿AB,MN和XY,MN=XY,其中測(cè)桿AB在太陽(yáng)光下某一時(shí)刻的影子為BC(如圖中粗線).
(1)畫(huà)出測(cè)桿MN在同一時(shí)刻的影子NP(用粗線表示),并簡(jiǎn)述畫(huà)法;
(2)若在同一時(shí)刻測(cè)桿XY的影子的頂端恰好落在點(diǎn)B處,畫(huà)出測(cè)桿XY所在的位置(用實(shí)線表示),并簡(jiǎn)述畫(huà)法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線MN與以AB為直徑的半圓相切于點(diǎn)C,∠A=28°.
(1)求∠ACM的度數(shù);
(2)在MN上是否存在一點(diǎn)D,使ABCD=ACBC,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)圓柱體形零件,削去了占底面圓的四分之一部分的柱體(如圖),現(xiàn)已畫(huà)出了主視圖與俯視圖.
(1)請(qǐng)只用直尺和圓規(guī),將此零件的左視圖畫(huà)在規(guī)定的位置(不必寫(xiě)作法,只須保留作圖痕跡);
(2)若此零件底面圓的半徑r=2cm,高h=3cm,求此零件的表面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com