【題目】一個圓柱體形零件,削去了占底面圓的四分之一部分的柱體(如圖),現(xiàn)已畫出了主視圖與俯視圖.

(1)請只用直尺和圓規(guī),將此零件的左視圖畫在規(guī)定的位置(不必寫作法,只須保留作圖痕跡)

(2)若此零件底面圓的半徑r2cm,高h3cm,求此零件的表面積.

【答案】(1)見解析;(2)兩個底面積: 6πcm2;側(cè)面積: 12cm2;表面積:(15π12cm2

【解析】

1)由削去了占底面圓的四分之一部分的柱體易得主視圖和左視圖相同,可先畫一條線段等于主視圖中大長方形的長,然后分別做兩個端點(diǎn)的垂線及線段的垂直平分線,在兩端點(diǎn)的垂線上分別截取主視圖的高連接即可得到幾何體的左視圖;
2)此零件的表面積=兩個底面積+側(cè)面積,把相關(guān)數(shù)值代入即可求解.

解:(1)左視圖與主視圖形狀相同,有作垂線(直角)的痕跡(作法不唯一)

(2)兩個底面積:r2×6π(cm2)

側(cè)面積:(2πr×2r)×3(3π4)×312(cm2);

表面積:15π12(cm2)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,將對角線AC繞對角線交點(diǎn)O旋轉(zhuǎn),分別交邊ADBC于點(diǎn)E、F,點(diǎn)P是邊DC上的一個動點(diǎn),且保持DPAE,連接PEPF,設(shè)AEx0x3).

1)填空:PC   ,FC  ;(用含x的代數(shù)式表示)

2)求△PEF面積的最小值;

3)在運(yùn)動過程中,PEPF是否成立?若成立,求出x的值;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)P是x軸上的一個動點(diǎn).

(1)求此拋物線的解析式;

(2)求C、D兩點(diǎn)坐標(biāo)及BCD的面積;

(3)若點(diǎn)P在x軸上方的拋物線上,滿足SPCD=SBCD,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,的直徑,點(diǎn)延長線上的一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,連接.

1)若,求的長;

2)若點(diǎn)的延長線上運(yùn)動,的平分線交于點(diǎn),你認(rèn)為的大小是否發(fā)生變化?若變化,請說明理由;若不變化,求出的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為調(diào)查本校學(xué)生平均每天完成作業(yè)所用時間的情況,隨機(jī)調(diào)查了50名同學(xué),如圖是根據(jù)調(diào)查所得數(shù)據(jù)繪制的統(tǒng)計圖的一部分.

請根據(jù)以上信息,解答下列問題:

(1)將統(tǒng)計圖補(bǔ)充完整;

(2)若該校共有1 800名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計該校全體學(xué)生平均每天完成作業(yè)所用總時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB90°,點(diǎn)D、E分別在邊BC、AC上,AC3AE,∠CDE45°(如圖),DCE沿直線DE翻折,翻折后的點(diǎn)C落在ABC內(nèi)部的點(diǎn)F,直線AF與邊BC相交于點(diǎn)G,如果BGAE,那么tanB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB切O于A、B兩點(diǎn),CD切O于點(diǎn)E,交PA,PB于C、D,若O的半徑為rPCD的周長等于3r,則tanAPB的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連接平面直角坐標(biāo)系xOy中,任意的三個點(diǎn)P,Q,G.如果∠PQG=90°,那么稱∠PQG為“黃金角”.

已知:點(diǎn)A(0,3),B(2,3),C(3,4),D(4,3).

(1)在A,B,CD四個點(diǎn)中能夠圍成“黃金角”的點(diǎn)是   ;

(2)當(dāng)時,直線ykx+3(k≠0)與以OP為直徑的圓交于點(diǎn)Q(點(diǎn)Q與點(diǎn)O,P不重合),當(dāng)∠OQP是“黃金角”時,求k的取值范圍;

(3)當(dāng)Pt,0)時,以OP為直徑的圓與△BCD的任一邊交于點(diǎn)Q,當(dāng)∠OQP是“黃金角”時,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB90°,OC2BOAC6,點(diǎn)B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).

1)求點(diǎn)A的坐標(biāo);

2)求拋物線的解析式;

3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)PPD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PEDE

①求點(diǎn)P的坐標(biāo);

②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案