【題目】規(guī)定:若y表示一個函數(shù),令M=|y|,我們則稱函數(shù)M為函數(shù)y幸福函數(shù)”.

(1)請寫出一次函數(shù)y=x﹣3幸福函數(shù)”M的解析式(解析式中不能含有絕對值);

(2)若一次函數(shù)y=與反比例函數(shù)y=(k>0)的幸福函數(shù)”M有三個交點,從左至右依次為A,B,C三點,并且BC=,求點A的坐標;

(3)已知a、b為實數(shù),二次函數(shù)y=x2+ax+b幸福函數(shù)”M,M=2恒有三個不等的實數(shù)根.

①求b的最小值;

②若該方程的三個不等實根恰為一直角三角形的三條邊,求ab的值.

【答案】(1) M=;(2) A(﹣1,8);(3) ①-2;②a=﹣16,b=62.

【解析】

1)根據(jù)“幸福函數(shù)”求解即可;

2)由題意設(shè)Bm,﹣m+),Cn,﹣n+),且mn,由BC=,得到,解得n=m+1,則Cm+1,﹣m+),由B、C都在反比例函數(shù)y=上,可得m(﹣m+)=(m+1)(﹣m+),解得:m=2,B24),把B2,4)代入y=得到k=8,解方程組可得的A坐標;

3)①由題意:拋物線y=x2+ax+b的頂點坐標的縱坐標為﹣2,由此構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題;

②當y=2時,2=x2+ax+b,可得x2+ax+b2=0,設(shè)方程的兩個根為x1,x2,(x1x2),則x1+x2=﹣a,x1x2=b2,由方程M=2的三個不等實根恰為一直角三角形的三條邊,則有:x22=x12+(﹣2,構(gòu)建方程組求出a、b即可.

1M=

2)由題意設(shè)Bm,﹣m+),Cn,﹣n+),且mn

BC=,∴,解得:n=m+1,則Cm+1,﹣m+).

BC都在反比例函數(shù)y=上,∴m(﹣m+)=(m+1)(﹣m+),解得:m=2,∴B2,4),把B2,4)代入y=得到k=8,由,解得:,∴A(﹣18).

3)①由題意:拋物線y=x2+ax+b的頂點坐標的縱坐標為﹣2,∴﹣2=,∴b=a22

0,∴b有最小值,最小值為﹣2

②當y=2時,2=x2+ax+b,∴x2+ax+b2=0,設(shè)方程的兩個根為x1x2,(x1x2),則x1+x2=﹣a,x1x2=b2

∵方程M=2的三個不等實根恰為一直角三角形的三條邊,則有:x22=x12+(﹣2,∴(x2+x1)(x2x1)=,∴x2x1=﹣,∴(x1+x224x1x2=a2,∴a24b2)=a2

b=a22

由①②可得:b=62,a16

x1+x2=﹣a0,∴a0,∴a=﹣16

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABD和△ACE中,ABADACAE,∠DAB=∠CAEα,連接DC、BE

1)如圖1,求證:DCBE;

2)如圖2,DCBE交于點F,用含α的式子表示∠AFE

3)如圖3,過AAGDC于點G,式于的值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACB90°ACBC,ADCE,BECE,垂足分別為D,E,若ADaDEb,

1)如圖1,求BE的長,寫出求解過程;(用含a,b的式子表示)

2)如圖2,點DABC內(nèi)部時,直接寫出BE的長___.(用含ab的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,分別以,為邊作等邊三角形和等邊三角形,連接交于點,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數(shù)根

(1)求k的取值范圍;

(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,求作一點P,使P到∠A的兩邊的距離相等,且PAPB、下列確定P點的方法正確的是( 。

A.P為∠A、∠B兩角平分線的交點

B.PAC、AB兩邊上的高的交點

C.P為∠A的角平分線與AB的垂直平分線的交點

D.PAC、AB兩邊的垂直平分線的交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC≌△ADE,且∠CAD10°,∠B∠D25°,∠EAB120°,試求∠DFB∠DGB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,yx的反比例函數(shù)有( 。

(1)y=3x;(2)y=﹣;(3)y=;(4)﹣xy=3;(5);(6);(7)y=2x2;(8)

A. (2)(4) B. (2)(3)(5)(8) C. (2)(7)(8) D. (1)(3)(4)(6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:相似三角形對應(yīng)邊上的中線之比等于相似比.

要求:①根據(jù)給出的△ABC及線段A'B′,A′(A′=A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;

②在已有的圖形上畫出一組對應(yīng)中線,并據(jù)此寫出已知、求證和證明過程.

查看答案和解析>>

同步練習冊答案