【題目】某校為了解七、八年級學生對新冠傳播與防治知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理和分析.部分信息如下:

a.七年級成績頻數(shù)分布直方圖:

b.七年級成績在70m80這一組的是:

707272,7576,7677,77,78,7979

c.七、八年級成績的平均數(shù)、中位數(shù)如下:

年級

平均數(shù)

中位數(shù)

76.9

a

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測試中,七年級在70分以上的有  人,表格中a的值為  

2)在這次測試中,七年級學生甲與八年級學生乙的成績都是79分,請判斷兩位學生在各自年級的排名誰更靠前;

3)該校七年級學生有500人,假設全部參加此次測試,請你估計七年級成績超過平均數(shù)76.9分的人數(shù).

【答案】133,78.5;(2)在這次測試中,七年級學生甲在本年級的排名誰更靠前;(3)七年級成績超過平均數(shù)76.9分的有280

【解析】

1)根據(jù)頻數(shù)分布表中的數(shù)據(jù)可以得到在這次測試中,七年級在70分以上的人數(shù);根據(jù)統(tǒng)計圖和統(tǒng)計表中的數(shù)據(jù)和七年級成績在70x80這一組的數(shù)據(jù),可以求得a的值;

2)根據(jù)統(tǒng)計表中的數(shù)據(jù)可以得到兩位學生在各自年級的排名誰更靠前;

3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)和題目中的數(shù)據(jù)可以計算出七年級成績超過平均數(shù)76.9分的人數(shù).

解:(1)在這次測試中,七年級在70分以上的有:10+15+833(人),

七年級抽查了50名學生,

a=(78+79÷278.5,

故答案為:33,78.5;

2)∵七年級的中位數(shù)是78.5,八年級的中位數(shù)是79.5,

7978.57979.5,

∴在這次測試中,七年級學生甲在本年級的排名誰更靠前;

3500×280(人);

答:七年級成績超過平均數(shù)76.9分的有280人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面內(nèi)的兩條直線l1、l2,AB在直線l2上,過點AB兩點分別作直線l1的垂線,垂足分別為A1、B1,我們把線段A1B1叫做線段AB在直線l2上的正投影,其長度可記作TABCDTAB,l2,特別地,線段AC在直線l2上的正投影就是線段A1C,請依據(jù)上述定義解決如下問題.

1)如圖1,在銳角ABC中,AB=5,TAC,AB=3,則TBCAB= ;

2)如圖2,在Rt△ABC中,∠ACB=90°,TACAB=4,TBCAB=9,求△ABC的面積;

3)如圖3,在鈍角△ABC中,∠A=60°,點DAB邊上,∠ACD=90°TAD,AC=2TBC,AB=6,求TBCCD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙二人都是戶外運動愛好者,在一次登山活動中,甲、乙二人距出發(fā)點的高度 (單位:米), (單位:米)與乙登山時間 x (單位:分鐘)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山的速度是每分鐘 米,乙在 2 分鐘時提速,提速時距地面的高度 ______米;

2)若乙提速后,乙的速度是甲登山速度的 3 倍,請分別求出甲、乙二人登山全過程中,登山時距地面的高度 , 與乙登山時間之間的函數(shù)關系式;

3)在(2)的條件下,乙登山多長時間追上了甲? 此時乙距提速時的高度為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的邊AB是⊙O的直徑,點C在⊙O上,已知AC6cm,BC8cm,點P、Q分別在邊AB、BC上,且點P不與點A、B重合,BQkAPk0),聯(lián)接PCPQ

1)求⊙O的半徑長;

2)當k2時,設APx,CPQ的面積為y,求y關于x的函數(shù)關系式,并寫出定義域;

3)如果CPQABC相似,且∠ACB=∠CPQ,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB是直角, tanB=,BC=16 cm,D2cm/s的速度由點A向點B勻速運動,到達點B即停止,M、N分別是AD、CD的中點,連結(jié)MN,設點D的運動時間為t

1)求MN的長;

2)求點D由點A到點B勻速運動過程中,線段MN所掃過的面積;

3)若⊿DMN是等腰三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,若將沿直線折疊,使點落在直線上的點處,若,則的長為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線軸相交于、兩點(點在點的左側(cè)),與軸相交于點,且

1)求這條拋物線的解析式;

2)如圖2點在軸上,且在點的右側(cè),點為拋物線上第二象限內(nèi)的點,連接交拋物線于第二象限內(nèi)的另外一點,點軸的距離與點軸的距離之比為,已知,求點的坐標;

3)如圖3,在(2)的條件下,點出發(fā),沿軸負方向運動,連接,點在線段上,連接,,過點,與拋物線相交于點,若,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P為⊙O內(nèi)一點,A、B、C、D為圓上順次四個點,連接AB、CD,OMAB于點M,連接MP并延長交CD于點N,連接PAPB、PC、PD

1)如圖1,若A、PC三點共線,BP、D三點共線,且ACBD,求證:PNCD;

2)如圖2,若PAPDPAPD,PCPBPCPB,求證:PNCD;

3)如圖3,在(2)的條件下,PA10PC6,∠APB60°,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于兩點,與軸交于點,其對稱軸為直線

1)直接寫出拋物線的解析式;

2)把線段沿軸向右平移,設平移后的對應點分別為、,當落在拋物線上時,求、的坐標;

3)除(2)中的平行四邊形外,在軸和拋物線上是否還分別存在點、,使得以、、為頂點的四邊形為平行四邊形?若存在,求出、的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案