【題目】如圖,反比例函數(shù)(x>0)經(jīng)過點A(2,3)和點B(點B在點A的右側(cè)),作BC⊥y軸,垂足為點C,連結(jié)AB,AC,AO,BO.
(1)求反比例函數(shù)的解析式;
(2)若∠ACB=45°,求直線AB的解析式;
(3)求△AOB的面積.
【答案】(1);(2);(3)S△OAB =8.
【解析】
(1)把A(2,3)代入反比例函數(shù)關(guān)系式求出k的值即可;
(2)求出點B的坐標(biāo),利用待定系數(shù)法求出AB的解析式即可;
(3)利用S△OAB=S梯形ABED求解即可.
(1)由題意得,k=xy=2×3=6,
∴反比例函數(shù)的解析式為;
(2)如答圖,分別過A、B作x軸垂線交x軸于點D、E,AD交BC于點F,
∵∠ACB=45°,點A坐標(biāo)為(2,3),
∴AF=CF=2,即點C坐標(biāo)為(0,1),
又BC⊥y軸,
∴點B縱坐標(biāo)為1,將其帶入得點B坐標(biāo)為(6,1),
設(shè)直線AB的解析式為y=mx+n,則
,
解得;,
∴直線AB的解析式為;
(3)由A(2,3)、B(6,1)知AD=3,BE=1,DE=4,
∵S△OAB=S△OAD+S梯形ABED-S△OBE,且S△OAD= S△OBE,
∴S△OAB=S梯形ABED =×(BE+AD)×DE=×(1+3)×4=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解初一同學(xué)們參加學(xué)校社團(tuán)的情況,某班同學(xué)隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.其中A:英語演講社團(tuán),B:語文閱讀社團(tuán),C:數(shù)學(xué)思維訓(xùn)練社團(tuán),D:書法社團(tuán),E:天文社團(tuán).統(tǒng)計后知道:被調(diào)查的同學(xué)中數(shù)學(xué)思維訓(xùn)練社團(tuán)的學(xué)生數(shù)是書法社團(tuán)學(xué)生數(shù)的1.5倍.
各組人數(shù)統(tǒng)計表
組別 | 人數(shù) |
A | 4 |
B | 6 |
C | a |
D | b |
E | 10 |
請根據(jù)以上圖表,解答下列問題:
(1)填空:這次被調(diào)查的同學(xué)共有____人,m=____;
(2)求扇形統(tǒng)計圖中扇形D的圓心角度數(shù);
(3)該校共有1000人,請估計參加書法社團(tuán)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司準(zhǔn)備每周(按120個工時計算)組裝三種型號的電腦360臺,組裝這些電腦每臺所需工時和每臺產(chǎn)值如下表.
電腦型號 | ① | ② | ③ |
工時(個) | |||
產(chǎn)值(萬元) | 0.4 | 0.3 | 0.2 |
(1)如果每周準(zhǔn)備組裝100臺型號③電腦,那么每周應(yīng)組裝型號①、②電腦各幾臺?
(2)如果一周產(chǎn)值定為10萬元,那么這周應(yīng)組裝型號①、②、③電腦各幾臺?
(3)若一周型號③電腦至少組裝20臺,一周產(chǎn)值記為w,試直接寫出w的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結(jié)果保留根號);
(2)已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0;②4a+2b+c>0;③<a<;④b>c.其中含所有正確結(jié)論的選項是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC是4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點C、E、D在同一直線上),求小水池的寬DE.(結(jié)果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,三個頂點的坐標(biāo)分別為,,,將繞原點順時針旋轉(zhuǎn)得,與關(guān)于軸對稱.
(1)畫出和;
(2)______;
(3)與組成的圖形是否是軸對稱圖形?若是軸對稱圖形,請直接寫出對稱軸所在的直線解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若x軸上的點A與y軸上的點B同時在某函數(shù)的圖象上則稱△AOB為該函數(shù)圖象的“截距三角形”,如圖①,△AOB為直線l的“截距三角形”.
(1)某一次函數(shù)圖象的“截距三角形”是等腰直角三角形,請寫出一個符合條件的函數(shù)表達(dá)式(寫出一個即可);
(2)如圖②,若拋物線y=﹣x2+bx+c在第一象限的“截距三角形”與直線y=﹣x+4的“截距三角形”完全重合,求這條拋物線對應(yīng)的函數(shù)表達(dá)式;
(3)如圖③,在(2)的條件下,在第一象限的拋物線上任取一點P,過點P作x軸的平行線與拋物線在第一象限的“截距三角形”的直角邊或直角邊的延長線交于點D,與斜邊或斜邊的延長線交于點E,設(shè)點P的橫坐標(biāo)為m,線段DE的長度為d.求d與m之間的函數(shù)關(guān)系式;
(4)如圖④,在(3)的條件下,過點E作EF∥y軸交x軸于點F.求四邊形ODEF的周長不變時m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一直線經(jīng)過原點O,且與反比例函數(shù)y=(k>0)相交于點A、點B,過點A作AC⊥y軸,垂足為C,連接BC.若△ABC面積為8,則k=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com