如圖,某建筑物BC頂部有釕一旗桿AB,且點(diǎn)A,B,C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點(diǎn)D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90.
【考點(diǎn)】解直角三角形的應(yīng)用-仰角俯角問題.
【分析】根據(jù)題意分別在兩個(gè)直角三角形中求得AF和BF的長后求差即可得到旗桿的高度,進(jìn)而求得BC的高度.
【解答】解:根據(jù)題意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.
過點(diǎn)D作DF⊥AC于點(diǎn)F.
則∠DFC=90°∠ADF=47°,∠BDF=42°.
∵四邊形DECF是矩形.
∴DF=EC=21,F(xiàn)C=DE=1.56,
在直角△DFA中,tan∠ADF=,
∴AF=DF•tan47°≈21×1.07=22.47(m).
在直角△DFB中,tan∠BDF=,
∴BF=DF•tan42°≈21×0.90=18.90(m),
則AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).
BC=BF+FC=18.90+1.56=20.46≈20.5(m).
答:旗桿AB的高度約是3.6m,建筑物BC的高度約是20.5米.
【點(diǎn)評】此題考查的知識(shí)點(diǎn)是解直角三角形的應(yīng)用,解題的關(guān)鍵是把實(shí)際問題轉(zhuǎn)化為解直角三角形問題,先得到等腰直角三角形,再根據(jù)三角函數(shù)求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小聰在作線段AB的垂直平分線時(shí),他是這樣操作的:分別以A和B為圓心,大于AB的長為半徑畫弧,兩弧相交于C、D,則直線CD即為所求.根據(jù)他的作圖方法可知四邊形ADBC一定是( )
A.矩形 B.菱形 C.正方形 D.等腰梯形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下面的說法正確的是( )
A.三角形的角平分線、中線和高都在三角形內(nèi)
B.直角三角形的高只有一條
C.三角形的高至少有一條在三角形內(nèi)
D.鈍角三角形的三條高都在三角形外面
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形AOBC中,點(diǎn)A的坐標(biāo)是(﹣2,1),點(diǎn)C的縱坐標(biāo)是4,則B、C兩點(diǎn)的坐標(biāo)分別是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
陽光通過窗口AB照射到室內(nèi),在地面上留下2.7米的亮區(qū)DE(如圖所示),已知亮區(qū)到窗口下的墻角的距離EC=8.7米,窗口高AB=1.8米,則窗口底邊離地面的高BC為( )
A.4米 B.3.8米 C.3.6米 D.3.4米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一次函數(shù)y=﹣x+a﹣3(a為常數(shù))與反比例函數(shù)y=﹣的圖象交于A、B兩點(diǎn),當(dāng)A、B兩點(diǎn)關(guān)于原點(diǎn)對稱時(shí)a的值是( )
A.0 B.﹣3 C.3 D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com