【題目】如圖,以RtABC的斜邊BC為邊,在ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO.若AB4,AO6,則AC的長等于( 。

A. 12B. 16C. 8+6D. 4+6

【答案】B

【解析】

AC上取一點G,使CG=AB=4,連接OG,可證得OGC≌△OAB,從而得到OG=OA=6,再可證AOG是等腰直角三角形,根據(jù)求出AG,也就求得AC

解:在AC上取一點G使CGAB4,連接OG

∵∠ABO90°﹣∠AHB,∠OCG90°﹣∠OHC,∠OHC=∠AHB

∴∠ABO=∠OCG

OBOC,CGAB

∴△OGC≌△OAB

OGOA6,∠BOA=∠GOC

∵∠GOC+GOH90°

∴∠GOH+BOA90°

即:∠AOG90°

∴△AOG是等腰直角三角形,AG12(勾股定理)

AC16

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】元旦期間,某商場搞優(yōu)惠促銷活動,其活動內(nèi)容是:凡在本商場一次性購物超過100元者,超過100元的部分按9折優(yōu)惠.在此活動中,李明到該商場為單位一次性購買單價為60元的辦公用品x(x2)件,則應(yīng)付款y()與商品件數(shù)x()之間的關(guān)系式是( )

A.y54xB.y54x10

C.y54x90D.y54x45

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一段平直的公路上有三個城市,城在城和城之間,一輛慢車從城出發(fā)勻速開往城,與此同時一輛快車從城出發(fā)勻速開往城.當慢車到達城后立即以倍原速勻速返回到城.當快車到達城后,休息了半小時后再提高原速的的速度勻速開往城.下圖是慢車出發(fā)后的時間(小時)與兩車之間的距離(千米)之間的函數(shù)關(guān)系圖,慢車出發(fā)6小時后,兩車相距___________千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線軸交于點,與軸交于點,,,分別以,為邊作矩形,直線于點,交直線于點

1)求直線的解析式及點的坐標.

2)如圖2,為直線上一動點,點,點為直線上兩動點(在上,在下),滿足,當最大時,求的最小值,并求出此時點的坐標.

3)如圖3,將繞著點順時針旋轉(zhuǎn),記旋轉(zhuǎn)后的三角形為,線段所在的直線交直線于點不與、重合),交軸于點,在平面內(nèi)是否存在一點,使得以四點形成的四邊形為菱形,若存在,請直接寫出點的坐標;若不存在,請說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A在函數(shù)(x>0)的圖象上,點B在直線(k為常數(shù),且k0)上,若A,B兩點關(guān)于原點對稱,則稱點A,B為函數(shù)y1 , y2 圖象上的一對“友好點”.請問這兩個函數(shù)圖象上的“友好點”對數(shù)的情況為( )
A.只有1對或2對
B.只有1對
C.只有2對
D.只有2對或3對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,,ACBD相交于點O,ECD上一點,FOD上一點,且∠1=∠A

1)求證:;

2)若∠BFE=110°,A=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 中,點 O 是邊 AC 上一個動點,過 O 作直線 MNBC,設(shè) MN 交∠ACB 的平分線于點 E,交∠ACB 的外角平分線于點 F

1)求證:OEOF

2)當點 O 在邊 AC 上運動到什么位置時,四邊形 AECF 是矩形?并說明理由.

3)若 AC 邊上存在點 O,使四邊形 AECF 是正方形,猜想ABC 的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角三角板ABC的直角頂點C在直線DE上,CF平分∠BCD

1)在圖1中,若∠BCE40°,∠ACF   

2)在圖1中,若∠BCE=α,∠ACF   (用含α的式子表示);

3)將圖1中的三角板ABC繞頂點C旋轉(zhuǎn)至圖2的位置,若∠BCE150°,試求∠ACF與∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明,如圖點D,EF分別是三角形ABC的邊BC,CA,AB上的點,DEBA,DFCA.求證:∠FDE=∠A

證明:∵DEAB

∴∠FDE=∠      

DFCA,

∴∠A=∠      

∴∠FDE=∠A   

查看答案和解析>>

同步練習冊答案