如圖,已知點(diǎn)A(0,4),B(2,0).

(1)求直線AB的函數(shù)解析式;
(2)已知點(diǎn)M是線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),以M為頂點(diǎn)的拋物線y=(x﹣m)2+n與線段OA交于點(diǎn)C.
①求線段AC的長(zhǎng);(用含m的式子表示)
②是否存在某一時(shí)刻,使得△ACM與△AMO相似?若存在,求出此時(shí)m的值.

解:(1)設(shè)直線AB的函數(shù)解析式為:y=kx+b,
∵點(diǎn)A坐標(biāo)為(0,4),點(diǎn)B坐標(biāo)為(2,0),
,解得:。
∴直線AB的函數(shù)解析式為y=﹣2x+4。
(2)①∵以M為頂點(diǎn)的拋物線為y=(x﹣m)2+n,
∴拋物線頂點(diǎn)M的坐標(biāo)為(m,n)。
∵點(diǎn)M在線段AB上,∴n=﹣2m+4。
∴y=(x﹣m)2﹣2m+4。
把x=0代入y=(x﹣m)2﹣2m+4,得y=m2﹣2m+4,
∴C點(diǎn)坐標(biāo)為(0,m2﹣2m+4)。
∴AC=OA﹣OC=4﹣(m2﹣2m+4)=﹣m2+2m。
②存在某一時(shí)刻,能夠使得△ACM與△AMO相似。理由如下:
過(guò)點(diǎn)M作MD⊥y軸于點(diǎn)D,則D點(diǎn)坐標(biāo)為(0,﹣2m+4),

∴AD=OA﹣OD=4﹣(﹣2m+4)=2m。
∵M(jìn)不與點(diǎn)A、B重合,∴0<m<2。
又∵M(jìn)D=m,∴
∵在△ACM與△AMO中,∠CAM=∠MAO,∠MCA>∠AOM,
∴當(dāng)△ACM與△AMO相似時(shí),假設(shè)△ACM∽△AMO。
,即。
整理,得 9m2﹣8m=0,解得m=或m=0(舍去),
∴存在一時(shí)刻使得△ACM與△AMO相似,此時(shí)m=

解析試題分析:(1)設(shè)直線AB的函數(shù)解析式為:y=kx+b,將A、B兩點(diǎn)的坐標(biāo)代入,運(yùn)用待定系數(shù)法即可求出直線AB的函數(shù)解析式。
(2)①先由拋物線的頂點(diǎn)式為y=(x﹣m)2+n得出頂點(diǎn)M的坐標(biāo)為(m,n),由點(diǎn)M是線段AB上一動(dòng)點(diǎn),得出n=﹣2m+4,則y=(x﹣m)2﹣2m+4,再求出拋物線y=(x﹣m)2+n與y軸交點(diǎn)C的坐標(biāo),然后根據(jù)AC=OA﹣OC即可求解。
②過(guò)點(diǎn)M作MD⊥y軸于點(diǎn)D,則D點(diǎn)坐標(biāo)為(0,﹣2m+4),AD=OA﹣OD=2m,由勾股定理求出AM=m.在△ACM與△AMO中,由于∠CAM=∠MAO,∠MCA>∠AOM,所以當(dāng)△ACM與△AMO相似時(shí),只能是△ACM∽△AMO,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出,即,解方程求出m的值即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線的對(duì)稱軸是直線x=,與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,并且點(diǎn)A的坐標(biāo)為(—1,0).

(1)求拋物線的解析式;
(2)過(guò)點(diǎn)C作CD//x軸交拋物線于點(diǎn)D,連接AD交y軸于點(diǎn)E,連接AC,設(shè)△AEC的面積為S1, △DEC的面積為S2,求S1:S2的值;
(3)點(diǎn)F坐標(biāo)為(6,0),連接D,在(2)的條件下,點(diǎn)P從點(diǎn)E出發(fā),以每秒3個(gè)單位長(zhǎng)的速度沿E→C→D→F勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)F出發(fā),以每秒2個(gè)單位長(zhǎng)的速度沿F→A勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另外一點(diǎn)也隨之停止運(yùn)動(dòng).若點(diǎn)P、Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是直角三角形?請(qǐng)直接寫(xiě)出所有符合條件的t值..

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O(shè)為原點(diǎn),OC、OA所在直線為軸建立坐標(biāo)系.拋物線頂點(diǎn)為A,且經(jīng)過(guò)點(diǎn)C.點(diǎn)P在線段AO上由A向點(diǎn)O運(yùn)動(dòng),點(diǎn)O在線段OC上由C向點(diǎn)O運(yùn)動(dòng),QD⊥OC交BC于點(diǎn)D,OD所在直線與拋物線在第一象限交于點(diǎn)E.

(1)求拋物線的解析式;
(2)點(diǎn)E′是E關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)Q運(yùn)動(dòng)到何處時(shí),四邊形OEAE′是菱形?
(3)點(diǎn)P、Q分別以每秒2個(gè)單位和3個(gè)單位的速度同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),PB∥OD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013年四川眉山11分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B在x軸上,點(diǎn)C、D在y軸上,且OB=OC=3,OA=OD=1,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn),直線AD與拋物線交于另一點(diǎn)M.

(1)求這條拋物線的解析式;
(2)P為拋物線上一動(dòng)點(diǎn),E為直線AD上一動(dòng)點(diǎn),是否存在點(diǎn)P,使以點(diǎn)A、P、E為頂點(diǎn)的三角形為等腰直角三角形?若存在,請(qǐng)求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)請(qǐng)直接寫(xiě)出將該拋物線沿射線AD方向平移個(gè)單位后得到的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013年浙江義烏10分)小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,△DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F(xiàn)(,).
(1)他們將△ABC繞C點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)450得到△A1B1C.請(qǐng)你寫(xiě)出點(diǎn)A1,B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)450,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上.請(qǐng)你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo).請(qǐng)你直接寫(xiě)出點(diǎn)P的所有坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013年廣東梅州10分)如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.

(1)寫(xiě)出以A,B,C為頂點(diǎn)的三角形面積;
(2)過(guò)點(diǎn)E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),以MN為一邊,拋物線上的任一點(diǎn)P為另一頂點(diǎn)做平行四邊形,當(dāng)平行四邊形的面積為8時(shí),求出點(diǎn)P的坐標(biāo);
(3)過(guò)點(diǎn)D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點(diǎn)Q(點(diǎn)Q在第一象限),使得以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似,求線段QD的長(zhǎng)(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)為(0,4)且與x軸交于(﹣2,0),(2,0).

(1)直接寫(xiě)出拋物線解析式;
(2)如圖,將拋物線向右平移k個(gè)單位,設(shè)平移后拋物線的頂點(diǎn)為D,與x軸的交點(diǎn)為A、B,與原拋物線的交點(diǎn)為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時(shí),求此時(shí)k的值;
②是否存在這樣的k值,使得點(diǎn)O、P、D三點(diǎn)恰好在同一條直線上?若存在,求出k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點(diǎn),過(guò)A、B兩點(diǎn)的拋物線為y=﹣x2+bx+c.點(diǎn)D為線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)D作CD⊥x軸于點(diǎn)C,交拋物線于點(diǎn)E.

(1)求拋物線的解析式.
(2)當(dāng)DE=4時(shí),求四邊形CAEB的面積.
(3)連接BE,是否存在點(diǎn)D,使得△DBE和△DAC相似?若存在,求此點(diǎn)D坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,過(guò)點(diǎn)A(0,4)的圓的圓心坐標(biāo)為C(2,0),B是第一象限圓弧上的一點(diǎn),且BC⊥AC,拋物線經(jīng)過(guò)C、B兩點(diǎn),與x軸的另一交點(diǎn)為D。

(1)點(diǎn)B的坐標(biāo)為(       ,       ),拋物線的表達(dá)式為       .
(2)如圖2,求證:BD//AC;
(3)如圖3,點(diǎn)Q為線段BC上一點(diǎn),且AQ=5,直線AQ交⊙C于點(diǎn)P,求AP的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案