如圖,在平面直角坐標系xOy中,直線y=x+4與坐標軸分別交于A、B兩點,過A、B兩點的拋物線為y=﹣x2+bx+c.點D為線段AB上一動點,過點D作CD⊥x軸于點C,交拋物線于點E.
(1)求拋物線的解析式.
(2)當(dāng)DE=4時,求四邊形CAEB的面積.
(3)連接BE,是否存在點D,使得△DBE和△DAC相似?若存在,求此點D坐標;若不存在,說明理由.
(1)y=﹣x2﹣3x+4。
(2)12
(3)存在點D,使得△DBE和△DAC相似,點D的坐標為(﹣3,1)或(﹣2,2)。
解析試題分析:(1)首先求出點A、B的坐標,然后利用待定系數(shù)法求出拋物線的解析式。
(2)設(shè)點C坐標為(m,0)(m<0),根據(jù)已知條件求出點E坐標為(m,8+m);由于點E在拋物線上,則可以列出方程求出m的值.在計算四邊形CAEB面積時,利用S四邊形CAEB=S△ACE+S梯形OCEB﹣S△BCO,可以簡化計算。
(3)由于△ACD為等腰直角三角形,而△DBE和△DAC相似,則△DBE必為等腰直角三角形。分∠BED=90°和∠EBD=90°兩種情況討論。
解:(1)在直線解析式y(tǒng)=x+4中,令x=0,得y=4;令y=0,得x=﹣4,
∴A(﹣4,0),B(0,4)。
∵點A(﹣4,0),B(0,4)在拋物線y=﹣x2+bx+c上,
∴,解得:。
∴拋物線的解析式為:y=﹣x2﹣3x+4。
(2)設(shè)點C坐標為(m,0)(m<0),則OC=﹣m,AC=4+m。
∵OA=OB=4,∴∠BAC=45°!唷鰽CD為等腰直角三角形。∴CD=AC=4+m。
∴CE=CD+DE=4+m+4=8+m!帱cE坐標為(m,8+m)。
∵點E在拋物線y=﹣x2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2。
∴C(﹣2,0),AC=OC=2,CE=6。
∴S四邊形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12。
(3)設(shè)點C坐標為(m,0)(m<0),
則OC=﹣m,CD=AC=4+m,BD=OC=﹣m,則D(m,4+m)。
∵△ACD為等腰直角三角形,若△DBE和△DAC相似,則△DBE必為等腰直角三角形。
i)若∠BED=90°,則BE=DE,
∵BE=OC=﹣m,∴DE=BE=﹣m!郈E=4+m﹣m=4。∴E(m,4)。
∵點E在拋物線y=﹣x2﹣3x+4上,
∴4=﹣m2﹣3m+4,解得m=0(不合題意,舍去)或m=﹣3!郉(﹣3,1)。
ii)若∠EBD=90°,則BE=BD=﹣m,
在等腰直角三角形EBD中,DE=BD=﹣2m,∴CE=4+m﹣2m=4﹣m!郋(m,4﹣m)。
∵點E在拋物線y=﹣x2﹣3x+4上,
∴4﹣m=﹣m2﹣3m+4,解得m=0(不合題意,舍去)或m=﹣2。
∴D(﹣2,2)。
綜上所述,存在點D,使得△DBE和△DAC相似,點D的坐標為(﹣3,1)或(﹣2,2)。
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)(m>0)的圖象與x軸交于A、B兩點.
(1)寫出A、B兩點的坐標(坐標用m表示);
(2)若二次函數(shù)圖象的頂點P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)設(shè)以AB為直徑的⊙M與y軸交于C、D兩點,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點A(0,4),B(2,0).
(1)求直線AB的函數(shù)解析式;
(2)已知點M是線段AB上一動點(不與點A、B重合),以M為頂點的拋物線y=(x﹣m)2+n與線段OA交于點C.
①求線段AC的長;(用含m的式子表示)
②是否存在某一時刻,使得△ACM與△AMO相似?若存在,求出此時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(點A在點B的左側(cè))。
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形,如果存在,請求出點G的坐標,如果不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),B(﹣1,3),C(﹣3,3)
(1)求此二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的對稱軸為直線l,該圖象上的點P(m,n)在第三象限,其關(guān)于直線l的對稱點為M,點M關(guān)于y軸的對稱點為N,若四邊形OAPN的面積為20,求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系中,矩形OABC的邊OA=2,OC=6,在OC上取點D將△AOD沿AD翻折,使O點落在AB邊上的E點處,將一個足夠大的直角三角板的頂點P從D點出發(fā)沿線段DA→AB移動,且一直角邊始終經(jīng)過點D,另一直角邊所在直線與直線DE,BC分別交于點M,N.
(1)填空:D點坐標是( , ),E點坐標是( , );
(2)如圖1,當(dāng)點P在線段DA上移動時,是否存在這樣的點M,使△CMN為等腰三角形?若存在,請求出M點坐標;若不存在,請說明理由;
(3)如圖2,當(dāng)點P在線段AB上移動時,設(shè)P點坐標為(x,2),記△DBN的面積為S,請直接寫出S與x之間的函數(shù)關(guān)系式,并求出S隨x增大而減小時所對應(yīng)的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系xOy中,矩形ABCO的頂點A、C分別在y軸、x軸正半軸上,點P在AB上,PA=1,AO=2.經(jīng)過原點的拋物線的對稱軸是直線x=2.
(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長的三角板的直角頂點放在P點處,兩直角邊恰好分別經(jīng)過點O和C.現(xiàn)在利用圖2進行如下探究:
①將三角板從圖1中的位置開始,繞點P順時針旋轉(zhuǎn),兩直角邊分別交OA、OC于點E、F,當(dāng)點E和點A重合時停止旋轉(zhuǎn).請你觀察、猜想,在這個過程中,的值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,求出的值.
②設(shè)(1)中的拋物線與x軸的另一個交點為D,頂點為M,在①的旋轉(zhuǎn)過程中,是否存在點F,使△DMF為等腰三角形?若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
由示意圖可見,拋物線y=x2 +px+q ①若有兩點A(a,yl)、B(b,y2)(其中a<b)在x軸下方,則拋物線必與x軸有兩個交點C(x1,O)、D(x2,O)(其中xl<x2),且滿足xl<a<b<x2.當(dāng)A(1,- 2.005),且xl、x2均為整數(shù)時,求二次函數(shù)的表達式,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
如圖,點P是以O(shè)為圓心, AB為直徑的半圓的中點,AB=2,等腰直角三角板45°角的頂點與點P重合,當(dāng)此三角板繞點P旋轉(zhuǎn)時,它的斜邊和直角邊所在的直線與直徑AB分別相交于C、D兩點.設(shè)線段AD的長為x,線段BC的長為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com