【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別是30°、45°,如果此時熱氣球C處的高度CD為100米,點A,D,B在同一直線上,則AB兩點的距離是( )
A.200米
B.200 米
C.220 米
D.100( )米
科目:初中數學 來源: 題型:
【題目】已知:直線l分別交AB、CD與E、F兩點,且AB∥CD.
(1) 說明:∠1=∠2;
(2) 如圖2,點M、N在AB、CD之間,且在直線l左側,若∠EMN+∠FNM=260°,
①求:∠AEM+∠CFN的度數;
②如圖3,若EP平分∠AEM,FP平分∠CFN,求∠P的度數;
(3) 如圖4,∠2=80°,點G在射線EB上,點H在AB上方的直線l上,點Q是平面內一點,連接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接寫出∠GQH的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算題 1、化簡
2、若一次函數y=kx+b經過點A(3,4)、B(4,5),求這一次函數的解析式.
(1)先化簡,再求值: ÷(2+ )
(2)若一次函數y=kx+b經過點A(3,4)、B(4,5),求這一次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中點、平行線、等腰直角三角形、等邊三角形都是常見的幾何圖形!
(1)如圖1,若點D為等腰直角三角形ABC斜邊BC的中點,點E,F(xiàn)分別在AB、AC邊上,且∠EDF=90°,連接AD、EF,當BC=5 ,F(xiàn)C=2時,求EF的長度;
(2)如圖2,若點D為等邊三角形ABC邊BC的中點,點E,F(xiàn)分別在AB,AC邊上,且∠EDF=90°;M為EF的中點,連接CM,當DF∥AB時,證明:3ED=2MC;
(3)如圖3,若點D為等邊三角形ABC邊BC的中點,點E,F(xiàn)分別在AB,AC邊上,且∠EDF=90°;當BE=6,CF=0.8時,直接寫出EF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某天早晨,王老師從家出發(fā)步行前往學校,途中在路邊一飯店吃早餐,如圖所示是王老師從家到學校這一過程中所走的路程S(米)與時間t(分)之間的關系.
(1)學校離他家 米,從出發(fā)到學校,王老師共用了 分鐘;
(2)王老師吃早餐用了多少分鐘?
(3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥ED,CD=BF,若要說明△ABC ≌△EDF,則不能補充的條件是( 。
A.AC=EFB.AB=EDC.∠A=∠ED.AC∥EF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在一次數學興趣小組活動中,進行了如下探索活動.
問題原型:如圖(1),在矩形ABCD中,AB=6,AD=8,P、Q分別是AB、AD邊的中點,以AP、AQ為鄰邊作矩形APEQ,連接CE,則CE的長為 (直接填空)
問題變式:(1)如圖(2),小明讓矩形APEQ繞著點A逆時針旋轉至點E恰好落在AD上,連接CE、DQ,請幫助小明求出CE和DQ的長,并求DQ:CE的值.
(2)如圖(3),當矩形APEQ繞著點A逆時針旋轉至如圖(3)位置時,請幫助小明判斷DQ:CE的值是否發(fā)生變化?若不變,說明理由.若改變,求出新的比值.
問題拓展:若將“問題原型”中的矩形ABCD改變?yōu)槠叫兴倪呅?/span>ABCD,且AB=3,AD=7,∠B=45°,P、Q分別是AB、AD邊上的點,且AP=AB,AQ=AD,以AP、AQ為鄰邊作平行四邊形APEQ.當平行四邊形APEQ繞著點A逆時針旋轉至如圖(4)位置時,連接CE、DQ.請幫助小明求出DQ:CE的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com