【題目】如圖,AB是的一條弦,點C是上一動點,且,點E、F分別是AC、BC的中點,直線EF與交于G、H兩點.若的半徑為5,則的最大值為______.
【答案】7.5
【解析】
首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進(jìn)而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為5,可得AB=OA=OB=5,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當(dāng)弦GH是圓的直徑時,它的值最大,進(jìn)而求出GE+FH的最大值是多少即可.
如圖1,連接OA、OB,
,
∵∠ACB=30°,
∴∠AOB=2∠ACB=60°,
∵OA=OB,
∴△AOB為等邊三角形,
∵⊙O的半徑為5,
∴AB=OA=OB=5,
∵點E,F分別是AC、BC的中點,
∴EF=AB=,
要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,
∵當(dāng)弦GH是圓的直徑時,它的最大值為:5×2=10,
∴GE+FH的最大值為:10-=7.5.
故答案為:7.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是長沙九龍倉國際金融中心,位于長沙市黃興路與解放路交會處的東北角,投資160億元人民幣,總建筑面積達(dá)98萬平方米,中心主樓BC高452m,是目前湖南省第一高樓,大樓頂部有一發(fā)射塔AB,已知和BC處于同一水平面上有一高樓DE,在樓DE底端D點測得A的仰角為α,tanα=,在頂端E點測得A的仰角為45°,AE=140m
(1)求兩樓之間的距離CD;
(2)求發(fā)射塔AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了對學(xué)生進(jìn)行革命傳統(tǒng)教育,紅旗中學(xué)開展了“清明節(jié)祭掃”活動.全校學(xué)生從學(xué)校同時出發(fā),步行米到達(dá)烈士紀(jì)念館.學(xué)校要求九班提前到達(dá)目的地,做好活動的準(zhǔn)備工作.行走過程中,九(1)班步行的平均速度是其他班的倍,結(jié)果比其他班提前分鐘到達(dá).分別求九(1)班、其他班步行的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某水果公司以3元/kg的成本價新進(jìn)10000kg柑橘,如果公司希望這批柑橘能獲得利潤6000元,已知柑橘損壞率統(tǒng)計表如下,請你填寫最后一欄數(shù)據(jù),完成此表:
(1)損壞率的概率約是多少,并說明理由 (保留小數(shù)點后一位)
(2)在出售柑橘(去掉損壞的柑橘)時,確定大約定價多少合適?
柑橘總質(zhì)量 | 損壞柑橘質(zhì)量 | 柑橘損壞的頻率 |
300 | 30.9 | 0.103 |
350 | 35.7 | 0.102 |
400 | 39.2 | 0.098 |
450 | 44.5 | 0.099 |
500 | 50.5 | ? |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線MC與⊙O相切于點C.過點A作MC的垂線,垂足為D,線段AD與⊙O相交于點E.
(1)求證:AC是∠DAB的平分線;
(2)若AB=10,AC=4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界上大部分國家都使用攝氏溫度(℃),但美、英等國的天氣預(yù)報仍然使用華氏溫度(℉),兩種計量之間有如下的對應(yīng)表:
攝氏溫度(℃) | 0 | 10 | 20 | 30 | 40 | 50 |
華氏溫度(℉) | 32 | 50 | 68 | 86 | 104 | 122 |
由上表可以推斷出,華氏0度對應(yīng)的攝氏溫度是_____℃,若某一溫度時華氏溫度的值與對應(yīng)的攝氏溫度的值相等,則此溫度為_____℃.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣2a2x(a≠0)的對稱軸與x軸交于點P.
(1)求點P的坐標(biāo)(用含a的代數(shù)式表示);
(2)記函數(shù)(﹣1≤x≤3)的圖象為圖形M,若拋物線與圖形M恰有一個公共點,結(jié)合函數(shù)的圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿9m的B處安置高為1.5m的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=2,點A在⊙O上,∠AMN=30°,B為的中點,P是直徑MN上一動點,則PA+PB的最小值為( )
A. B. C. 1 D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com