【題目】如圖,ABO的直徑,直線MCO相切于點(diǎn)C.過點(diǎn)AMC的垂線,垂足為D,線段ADO相交于點(diǎn)E

1)求證:AC是∠DAB的平分線;

2)若AB10,AC4,求AE的長.

【答案】1)詳見解析;(26

【解析】

1)連接OC,根據(jù)切線的性質(zhì)得到∠OCM90°,得到OCAD,根據(jù)平行線的性質(zhì)、等腰三角形的性質(zhì)證明結(jié)論;

2)連接BC,連接BEOC于點(diǎn)F,根據(jù)勾股定理求出BC,證明△CFB∽△BCA,根據(jù)相似三角形的性質(zhì)求出CF,得到OF的長,根據(jù)三角形中位線定理解答即可.

1)證明:連接,如圖:

∵直線相切于點(diǎn)

的平分線.

2)解:連接,連接于點(diǎn),如圖:

AB的直徑

,為線段中點(diǎn)

,

,即

為直徑中點(diǎn),為線段中點(diǎn)

故答案是:(1)詳見解析;(26

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為減輕學(xué)生的作業(yè)負(fù)擔(dān),某地教育局規(guī)定初中階段學(xué)生每晚的作業(yè)量不超過1.5小時(shí),一個(gè)月后,九年一班芳芳對(duì)本班每位同學(xué)晚上作業(yè)時(shí)間進(jìn)行了一次調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了如圖所示的不完整的頻數(shù)分布直方圖(每組包含最大值,不包含最小值),并知11.5h45%22.5h10%,請(qǐng)根據(jù)以上信息解答問題.

1)求該班共有多少名學(xué)生;

2)求該班作業(yè)時(shí)間不超過1小時(shí)和超過2.5小時(shí)的共有多少人;

3)若該市九年級(jí)共有3000名學(xué)生,請(qǐng)估計(jì)他們中完成作業(yè)超過1.5小時(shí)而不超過2.5小時(shí)的有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長均為1的方格紙中,線段AB的端點(diǎn)A、B均在小正方形的頂點(diǎn)上.

(1)在方格紙中畫出以AB為一條直角邊的等腰直角ABC,頂點(diǎn)C在小正方形的頂點(diǎn)上;

(2)在方格紙中畫出ABC的中線BD,將線段DC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段CD′,畫出旋轉(zhuǎn)后的線段CD′,連接BD′,直接寫出四邊形BDCD′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校調(diào)查了若干名家長對(duì)“初中生帶手機(jī)上學(xué)”現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的條形與扇形統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,完成以下問題:

1)本次共調(diào)查了   名家長;扇形統(tǒng)計(jì)圖中“很贊同”所對(duì)應(yīng)的圓心角是   度.已知該校共有1600名家長,則“不贊同”的家長約有   名;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)從“不贊同”的五位家長中(兩女三男),隨機(jī)選取兩位家長對(duì)全校家長進(jìn)行“學(xué)生使用手機(jī)危害性”的專題講座,請(qǐng)用樹狀圖或列表法求出選中“11女”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 AB,CD的兩條弦,直線AB,CD互相垂直,垂足為點(diǎn)E,連接AD,過點(diǎn)B,垂足為點(diǎn)F,直線BF交直線CD于點(diǎn)G

(1)如圖1當(dāng)點(diǎn)E外時(shí),連接,求證BE平分∠GBC;

(2)如圖2當(dāng)點(diǎn)E內(nèi)時(shí),連接AC,AG,求證:AC=AG

(3)(2)條件下,連接BO,若BO平分,求線段EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的一條弦,點(diǎn)C上一動(dòng)點(diǎn),且,點(diǎn)E、F分別是AC、BC的中點(diǎn),直線EF交于GH兩點(diǎn).若的半徑為5,則的最大值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,∠ABD=90°,延長AB至點(diǎn)E,使BE=AB,連接CE

1)求證:四邊形BECD是矩形;

2)連接DEBC于點(diǎn)F,連接AF,若CE=2,∠DAB=30°,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x22(k1)x+ k2+3=0的兩實(shí)數(shù)根為x1,x2,設(shè)t=,則t的最大值為(   )

A.2B.2C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D,E分別是AB,BC邊上的點(diǎn),且DE∥AC,若,則△ACD的面積為(

A. 64 B. 72 C. 80 D. 96

查看答案和解析>>

同步練習(xí)冊(cè)答案