拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點(diǎn),設(shè)OA•OB=3(O為坐標(biāo)系原點(diǎn)).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線的對稱軸交x軸于點(diǎn)D,求證:點(diǎn)D是△ABC的外心;
(3)在拋物線上是否存在點(diǎn)P,使S△ABP=1?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(1)由題意,得x1•x2=2b-1.(1分)
∵OA•OB=3,OA=x1OB=x2,
∴x1•x2=3.(2分)
∴2b-1=3.
∴b=2.(3分)
∴所求的拋物線解析式是:y=-x2+4x-3.(4分)

(2)證明:如圖,
∵y=-x2+4x-3=-(x-2)2+1,
∴頂點(diǎn)C(2,1),D(2,0),CD=1.(5分)
令y=0,得-x2+4x-3=0.
解得x1=1,x2=3.(6分)
∴A(1,0),B(3,0),AD=DB=1.(7分)
∴AD=DC=DB.
∴D為△ABC的外心.(8分)

(3)解法一:設(shè)拋物線存在點(diǎn)P(x,y),使S△ABP=1.
由(2)可求得AB=3-1=2.
∴S△ABP=
1
2
AB•|y|=
1
2
×2•|y|=1.(9分)
∴y=±1.
當(dāng)y=1時,-x2+4x-3=1,解得x1=x2=2.(10分)
當(dāng)y=-1時,-x2+4x-3=-1,解得x=2±
2
.(11分)
∴存在點(diǎn)P,使S△ABP=1.
點(diǎn)P的坐標(biāo)是(2,1)或(2+
2
,-1)或
(2-
2
,-1).(12分)
解法二:由(2)得S△ABC=
1
2
AB•CD=
1
2
×2×1=1.(9分)
∴頂點(diǎn)C(2,1)是符合題意的一個點(diǎn).(10分)
另一方面,直線y=-1上任一點(diǎn)M,能使S△AMB=1,
把直線y=-1代入拋物線解析式,得-x2+4x-3=-1.
解得x=2±
2
.(11分)
∴存在點(diǎn)P,使S△ABP=1.
點(diǎn)P的坐標(biāo)是(2,1)或(2+
2
,-1)或(2-
2
,-1).(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+x+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為B(-2,0).
(1)求拋物線解析式;
(2)點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為x(-2<x<0),設(shè)△PBC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)M(m,n)是直線AC上的動點(diǎn).設(shè)m=2-a,如果在兩個實(shí)數(shù)m與n之間(不包括m和n)有且只有一個整數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的一元二次方程
1
2
x2+(m-2)x+2m-6=0

(1)求證:無論m取任何實(shí)數(shù),方程都有兩個實(shí)數(shù)根;
(2)當(dāng)m<3時,關(guān)于x的二次函數(shù)y=
1
2
x2+(m-2)x+2m-6
的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且2AB=3OC,求m的值;
(3)在(2)的條件下,過點(diǎn)C作直線lx軸,將二次函數(shù)圖象在y軸左側(cè)的部分沿直線l翻折,二次函數(shù)圖象的其余部分保持不變,得到一個新的圖象,記為G.請你結(jié)合圖象回答:當(dāng)直線y=
1
3
x+b
與圖象G只有一個公共點(diǎn)時,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,AO=8,AB=AC,sin∠ABC=
4
5
.CD與y軸交于點(diǎn)E,且S△COE=S△ADE.已知經(jīng)過B,C,E三點(diǎn)的圖象是一條拋物線,求這條拋物線對應(yīng)的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知過點(diǎn)(
3
2
,-
7
4
)的直線y=kx+b與x軸、y軸的交點(diǎn)分別為A、B,且經(jīng)過第一、三、四象限,它與拋物線y=x2-4x+3只有一個公共點(diǎn).
(1)求k的值;
(2)設(shè)拋物線的頂點(diǎn)為P,求點(diǎn)P到直線AB的距離d.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是梯形,sin∠OAD=tan∠OBC=
2
3
,PC是拋物線的對稱軸,且P(3,-3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求點(diǎn)D的坐標(biāo);
(3)求直線AD的函數(shù)表達(dá)式;
(4)PD與AD垂直嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點(diǎn),已知BCx軸,點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸上,且AC=BC.
(1)求拋物線的對稱軸;
(2)求A點(diǎn)坐標(biāo)并求拋物線的解析式;
(3)若點(diǎn)P在x軸下方且在拋物線對稱軸上的動點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P坐標(biāo);不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中有一直角梯形OABC,∠AOC=90°,ABOC,OC在x軸上,過A、B、C三點(diǎn)的拋物線表達(dá)式為y=-
1
18
x2+
4
9
x+10

(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)如果在梯形OABC內(nèi)有一矩形MNPO,使M在y軸上,N在BC邊上,P在OC邊上,當(dāng)MN為多少時,矩形MNPO的面積最大?最大面積是多少?
(3)若用一條直線將梯形OABC分為面積相等的兩部分,試說明你的分法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=x2-2x-3交x軸于A、B,交y軸于C,若在此拋物線上存在P,使△PAC的內(nèi)心在x軸上,則點(diǎn)P的坐標(biāo)為______.

查看答案和解析>>

同步練習(xí)冊答案