【題目】如圖,在菱形OBCD中,OB=1,相鄰兩內(nèi)角之比為1:2,將菱形OBCD繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到菱形OB′C′D′視為一次旋轉(zhuǎn),則菱形旋轉(zhuǎn)45次后點(diǎn)C的坐標(biāo)為_____.
【答案】(,﹣)
【解析】
先求出菱形的內(nèi)角度數(shù),過作軸于點(diǎn),在△中,利用特殊角度數(shù)及邊長(zhǎng)求解和長(zhǎng),則點(diǎn)坐標(biāo)可求,由,得出菱形4次旋轉(zhuǎn)一周,4次一個(gè)循環(huán),由,得出菱形旋轉(zhuǎn)45次后點(diǎn)與點(diǎn)重合,即可得出答案.
解:∵四邊形OBCD是菱形,相鄰兩內(nèi)角之比為1:2,
∴∠C=∠BOD=60°,∠D=∠OBC=120°.
根據(jù)旋轉(zhuǎn)性質(zhì)可得∠OB′C′=120°,
∴∠C′B′H=60°.
過C′作C′H⊥y軸于點(diǎn)H,如圖所示:
在Rt△C′B′H中,B′C′=1,
,.
.
坐標(biāo)為,,
∵360°÷90°=4,
∴菱形4次旋轉(zhuǎn)一周,4次一個(gè)循環(huán),
∵45÷4=11……1,
菱形旋轉(zhuǎn)45次后點(diǎn)與點(diǎn)重合,坐標(biāo)為,;
故答案為:,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+3,截取該函數(shù)圖象在0≤x≤4間的部分記為圖象G,設(shè)經(jīng)過點(diǎn)(0,t)且平行于x軸的直線為l,將圖象G在直線l下方的部分沿直線l翻折,圖象G在直線上方的部分不變,得到一個(gè)新函數(shù)的圖象M,若函數(shù)M的最大值與最小值的差不大于5,則t的取值范圍是( 。
A.﹣1≤t≤0B.﹣1≤tC.D.t≤﹣1或t≥0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,BC為⊙O切線,連接A、C兩點(diǎn),交⊙O于點(diǎn)D,BE=CE,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=CD2OE;
(3)若cos∠BAD=,BE=6,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,D、E分別是斜邊AB、直角邊BC上的點(diǎn),把沿著直線DE折疊.
如圖1,當(dāng)折疊后點(diǎn)B和點(diǎn)A重合時(shí),用直尺和圓規(guī)作出直線DE;不寫作法和證明,保留作圖痕跡
如圖2,當(dāng)折疊后點(diǎn)B落在AC邊上點(diǎn)P處,且四邊形PEBD是菱形時(shí),求折痕DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=10,連接BD,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對(duì)角線BD交于點(diǎn)E,連接EC.
(1)求證:AE=CE;
(2)若sin∠ABD=,當(dāng)點(diǎn)P在線段BC上時(shí),若BP=4,求△PEC的面積;
(3)若∠ABC=45°,當(dāng)點(diǎn)P在線段BC的延長(zhǎng)線上時(shí),請(qǐng)直接寫出△PEC是等腰三角形時(shí)BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),拋物線與x軸交于點(diǎn)A,C(點(diǎn)A在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)B,頂點(diǎn)為D.點(diǎn)Q為線段BC的三等分點(diǎn)(靠近點(diǎn)C).
(1)點(diǎn)M為拋物線對(duì)稱軸上一點(diǎn),點(diǎn)E為對(duì)稱軸右側(cè)拋物線上的點(diǎn)且位于第一象限,當(dāng)的周長(zhǎng)最小時(shí),求面積的最大值;
(2)在(1)的條件下,當(dāng)的面積最大時(shí),過點(diǎn)E作軸,垂足為N,將線段CN繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)N,再將點(diǎn)N向上平移個(gè)單位長(zhǎng)度.得到點(diǎn)P,點(diǎn)G在拋物線的對(duì)稱軸上,請(qǐng)問在平面直角坐標(biāo)系內(nèi)是否存在一點(diǎn)H,使點(diǎn)D,P,G,H構(gòu)成菱形.若存在,請(qǐng)直接寫出點(diǎn)H的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片,,,點(diǎn)在邊上,將沿折疊,點(diǎn)落在點(diǎn)處,、分別交于點(diǎn)、,且,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,點(diǎn)D是邊BC上一點(diǎn).作射線AD,點(diǎn)B關(guān)于射線AD的對(duì)稱點(diǎn)為點(diǎn)E.連接CE并延長(zhǎng),交射線AD于點(diǎn)F.
(1)如圖①,連接AE,
①AE與AC的數(shù)量關(guān)系是 ;
②設(shè)∠BAF=a,用a表示∠BCF的大小;
(2)如圖②,用等式表示線段AF,CF,EF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A1的坐標(biāo)為(1,2),以O為圓心,OA1長(zhǎng)為半徑畫弧,交直線y=x于點(diǎn)B1.過點(diǎn)B1作B1A2∥y軸交直線y=2x于點(diǎn)A2,以O為圓心,OA2長(zhǎng)為半徑畫弧,交直線y═x于點(diǎn)B2;過點(diǎn)B2作B2A3∥y軸交直線y=2x于點(diǎn)A3,以點(diǎn)O為圓心,OA3長(zhǎng)為半徑畫弧,交直線y=x于點(diǎn)B3;……按如此規(guī)律進(jìn)行下去,點(diǎn)B2020的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com