【題目】如圖,△ABC中,AB=8cm,AC=16cm,點P從A出發(fā),以每秒1厘米的速度向B運動,點Q從C同時出發(fā),以每秒2厘米的速度向A運動.其中一個動點到達端點時,另一個也相應(yīng)停止運動.那么,當(dāng)以A、P、Q為頂點的三角形與△ABC相似時,運動時間是_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:
①A,B兩城相距300千米;
②乙車比甲車晚出發(fā)1小時,卻早到1小時;
③乙車出發(fā)后2.5小時追上甲車;
④當(dāng)甲、乙兩車相距50千米時,t=或.
其中正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是線段OB上的一點(不與點B重合),D,E是半圓上的點且CD與BE交于點F,用①,②DC⊥AB,③FB=FD中的兩個作為題設(shè),余下的一個作為結(jié)論組成一個命題,則組成真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:
圖1 圖2 圖3
(1)初步思考:
如圖1, 在中,已知,BC=4,N為BC上一點且,試說明:
(2)問題提出:
如圖2,已知正方形ABCD的邊長為4,圓B的半徑為2,點P是圓B上的一個動點,求的最小值.
(3)推廣運用:
如圖3,已知菱形ABCD的邊長為4,∠B﹦60°,圓B的半徑為2,點P是圓B上的一個動點,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖a,AB為⊙O直徑,AC為⊙O的為弦,PA為⊙O的切線,∠APC=2∠1.
(1)求證:PC是⊙O的切線.
(2)當(dāng)∠1=30°,AB=4時,其他條件不變,求圖b中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點D.點P從點D出發(fā),沿線段DC向點C運動,點Q從點C出發(fā),沿線段CA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度,當(dāng)點P運動到C時,兩點都停止.設(shè)運動時間為t秒.
(1)求線段CD的長;
(2)設(shè)△CPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并確定在運動過程中是否存在某一時刻t,使得S△CPQ∶S△ABC=9∶100?若存在,求出t的值;若不存在,說明理由;
(3)當(dāng)t為何值時,△CPQ為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是直徑AB上的一點,AB=6,CP⊥AB交半圓于點C,以BC為直角邊構(gòu)造等腰Rt△BCD,∠BCD=90°,連接OD.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段AP,BC,OD的長度之間的關(guān)系進行了探究.
下面是小明的探究過程,請補充完整:
(1)對于點P在AB上的不同位置,畫圖、測量,得到了線段AP,BC,OD的長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置… | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | … |
BC | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | … |
OD | 6.71 | 7.24 | 7.07 | 6.71 | 6.16 | 5.33 | … |
在AP,BC,OD的長度這三個量中,確定________的長度是自變量,________的長度和________的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)OD=2BC時,線段AP的長度約為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D、E是△ABC中AB邊上的點,△CDE是等邊三角形,∠ACB=120°,則下列結(jié)論中錯誤的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線W:y=ax2﹣2的頂點為點A,與x軸的負半軸交于點D,直線AB交拋物線W于另一點C,點B的坐標(biāo)為(1,0).
(1)求直線AB的解析式;
(2)過點C作CE⊥x軸,交x軸于點E,若AC平分∠DCE,求拋物線W的解析式;
(3)若a=,將拋物線W向下平移m(m>0)個單位得到拋物線W1,如圖2,記拋物線W1的頂點為A1,與x軸負半軸的交點為D1,與射線BC的交點為C1.問:在平移的過程中,tan∠D1C1B是否恒為定值?若是,請求出tan∠D1C1B的值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com