【題目】如圖,在平面直角坐標系中,一動點從原點O出發(fā),沿著箭頭所示方向,每次移動1個單位,依次得到點,,,,,,···,則點的坐標是( )
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當點D在邊BC的延長線上且其他條件不變時,結論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關系,并說明理由;
(3)如圖3,當點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇同學要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補全已知和求證;
(2)按嘉淇同學的思路寫出證明過程;
(3)用文字敘述所證命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線AB與x軸、y軸分別交于點A,B,與反比例函數(shù) (k為常數(shù),且k>0)在第一象限的圖象交于點E,F(xiàn).過點E作EM⊥y軸于M,過點F作FN⊥x軸于N,直線EM與FN交于點C.若 (m為大于l的常數(shù)).記△CEF的面積為S1 , △OEF的面積為S2 , 則 = . (用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班45名學生的成績被分為5組,第1~4組的頻數(shù)分別為12,11,9,4,則第5組的頻率是( )
A.0.1B.0.2C.0.3D.0.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE把分成兩部分;
(1)直接寫出圖中的對頂角為 ,的鄰補角為 ;
(2)若,且,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD為平行四邊形,AE⊥BD于E,CF⊥BD于F.
(1)求證:BE=DF;
(2)若 M、N分別為邊AD、BC上的點,且DM=BN,試判斷四邊形MENF的形狀(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了更好地治理小凌河水質(zhì),保護環(huán)境,市治污公司決定購買10臺污水處理設備,現(xiàn)有A 、B兩種設備,A 、B單價分別為a萬元/臺、 b萬元/臺,月處理污水分別為240噸/月、200噸/月,經(jīng)調(diào)查,買一臺A型設備比買一臺B型設備多2萬元,購買2臺A型設備比購買3臺B型設備少6萬元.
(1)求a、b的值.
(2)經(jīng)預算,市治污公司購買污水處理器的資金不超過105萬元,你認為該公司有哪幾種購買方案?
(3)在(2)的條件下,若每月處理的污水不低于2040噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com