【題目】如圖所示,反映的是九(1)班學(xué)生外出乘車、步行、騎車的人數(shù)直方圖的一部分和圓形分布圖,下列說法:①九(1)班外出步行有8人;②在圓形統(tǒng)計(jì)圖中,步行人數(shù)所占的圓心角度數(shù)為82°;
③九(1)班外出的學(xué)生共有40人;④若該校九年級(jí)外出的學(xué)生共有500人,那么估計(jì)全年級(jí)外出騎車的人約有150人,其中正確的結(jié)論是( 。
A. ①②③ B. ①③④ C. ②③ D. ②④
【答案】B
【解析】求出九(1)班的總?cè)藬?shù),再求出步行的人數(shù),進(jìn)而求出步行人數(shù)所占的圓心角度數(shù),最后即可逐一作出判斷.
由扇形圖知乘車的人數(shù)是20人,占總?cè)藬?shù)的50%,所以九(1)班有20÷50%=40人,③正確;
所以騎車的占12÷40=30%,步行人數(shù)=401220=8人,①正確;
步行人數(shù)所占的圓心角度數(shù)為360°×20%=72°,②錯(cuò)誤;
如果該中學(xué)九年級(jí)外出的學(xué)生共有500人,那么估計(jì)全年級(jí)外出騎車的學(xué)生約有500×30%=150人,④正確.
故正確的是①③④.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生整體的數(shù)學(xué)學(xué)習(xí)能力,年級(jí)組織了“數(shù)學(xué)鉆石活動(dòng)”,從中隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,整理得到如下不完整的頻數(shù)分布表和數(shù)分布直方圖:
(1)表中的 , ;
(2)把上面的頻數(shù)分布直方圖補(bǔ)充完整;
(3)根據(jù)調(diào)查結(jié)果,估計(jì)年級(jí)500名學(xué)生中,成績(jī)不低于85分的人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)填寫下表,并觀察下列兩個(gè)代數(shù)式的值的變化情況。
(2)隨著n的值逐漸變大,兩個(gè)代數(shù)式的值如何變化?
(3)估計(jì)一下,哪個(gè)代數(shù)式的值先超過100?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這種圖形叫做“規(guī)形圖”,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?請(qǐng)解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BPC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下問題:
①如圖2:已知△ABC,BP平分∠ABC,CP平分∠ACB,直接寫出∠BPC與∠A之間存在的等量關(guān)系為: .
遷移運(yùn)用:如圖3:在△ABC中,∠A=80°,點(diǎn)O是∠ABC,∠ACB角平分線的交點(diǎn),點(diǎn)P是∠BOC,∠OCB角平分線的交點(diǎn),若∠OPC=100°,則∠ACB的度數(shù) .
②如圖4:若D點(diǎn)是△ABC內(nèi)任意一點(diǎn),BP平分∠ABD,CP平分∠ACD.直接寫出∠BDC、∠BPC、∠A之間存在的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,,于是可用來表示的小數(shù)部分.請(qǐng)解答下列問題:
(1)的整數(shù)部分是________,小數(shù)部分是________.
(2)如果的小數(shù)部分為,的整數(shù)部分為,求的值.
(3)已知:,其中是整數(shù),且,求的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,E為對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交射線AB于點(diǎn)F,連結(jié)BE.
(1)求證:∠AFD=∠EBC;
(2)若∠DAB=90°,當(dāng)△BEF為等腰三角形時(shí),求∠EFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=2,點(diǎn)E從點(diǎn)A出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿對(duì)角線AC向終點(diǎn)C運(yùn)動(dòng),點(diǎn)F從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿邊BA向終點(diǎn)A運(yùn)動(dòng),連結(jié)EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得到線段FG,以EF,FG為邊作正方形EFGH,設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為t秒(t>0).
(1)用含t的代數(shù)式表示點(diǎn)E到邊AB的距離.
(2)當(dāng)點(diǎn)G落在邊AB上時(shí),求t的值.
(3)連結(jié)BG,設(shè)△BFG的面積為S平方單位(S>0),求S與t之間的函數(shù)關(guān)系式.
(4)直接寫出當(dāng)正方形EFGH的頂點(diǎn)與點(diǎn)B,D距離相等時(shí)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=30°,點(diǎn)P在∠AOB的內(nèi)部,P1與P關(guān)于OA對(duì)稱,P2與P關(guān)于OB對(duì)稱,則△P1OP2是
A. 含30°角的直角三角形 B. 頂角是30的等腰三角形
C. 等邊三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=90°,AD=CD+AB,∠BAC=45°,E是BC上一點(diǎn),且∠DAE=45°,若BC=8,則△ADE面積為__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com