【題目】正方形的A1B1P1P2頂點P1、P2在反比例函數(shù)y= (x>0)的圖象上,頂點A1、B1分別在x軸、y軸的正半軸上,再在其右側(cè)作正方形P2P3A2B2 , 頂點P3在反比例函數(shù)y= (x>0)的圖象上,頂點A2在x軸的正半軸上,則點P3的坐標為 .
【答案】( +1, ﹣1)
【解析】解:作P1C⊥y軸于C,P2D⊥x軸于D,P3E⊥x軸于E,P3F⊥P2D于F,如圖,
設(shè)P1(a, ),則CP1=a,OC= ,
∵四邊形A1B1P1P2為正方形,
∴Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,
∴OB1=P1C=A1D=a,
∴OA1=B1C=P2D= ﹣a,
∴OD=a+ ﹣a= ,
∴P2的坐標為( , ﹣a),
把P2的坐標代入y= (x>0),得到( ﹣a) =2,解得a=﹣1(舍)或a=1,
∴P2(2,1),
設(shè)P3的坐標為(b, ),
又∵四邊形P2P3A2B2為正方形,
∴Rt△P2P3F≌Rt△A2P3E,
∴P3E=P3F=DE= ,
∴OE=OD+DE=2+ ,
∴2+ =b,解得b=1﹣ (舍),b=1+ ,
∴ = = ﹣1,
∴點P3的坐標為 ( +1, ﹣1).
故答案為:( +1, ﹣1).
作P1C⊥y軸于C,P2D⊥x軸于D,P3E⊥x軸于E,P3F⊥P2D于F,設(shè)P1(a, ),則CP1=a,OC= ,易得Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,則OB1=P1C=A1D=a,所以O(shè)A1=B1C=P2D= ﹣a,則P2的坐標為( , ﹣a),然后把P2的坐標代入反比例函數(shù)y= ,得到a的方程,解方程求出a,得到P2的坐標;設(shè)P3的坐標為(b, ),易得Rt△P2P3F≌Rt△A2P3E,則P3E=P3F=DE= ,通過OE=OD+DE=2+ =b,這樣得到關(guān)于b的方程,解方程求出b,得到P3的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距210千米,一輛貨車將貨物由甲地運至乙地,卸載后返回甲地.若貨車距乙地的距離y(千米)與時間t(時)的關(guān)系如圖所示,根據(jù)所提供的信息,回答下列問題:
(1)貨車在乙地卸貨停留了多長時間?
(2)貨車往返速度,哪個快?返回速度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】木工師傅可以用角尺測量并計算出圓的半徑r,用角尺的較短邊緊靠⊙O,并使較長邊與⊙O相切于點C,假設(shè)角尺的較長邊足夠長,角尺的頂點為B,較短邊AB=8cm,若讀得BC長為acm,則用含a的代數(shù)式表示r為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD為AB邊上的高.點E從點B出發(fā)在直線BC上以2cm/s的速度移動,過點E作BC的垂線交直線CD于點F.當點E運動________s時,CF=AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①(﹣2)101+(﹣2)100=﹣2100;②20172+2017一定可以被2018整除;③16.9× +15.1×能被4整除;④兩個連續(xù)奇數(shù)的平方差是8的倍數(shù).其中說法正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B、C、D四個車站的位置如圖所示,A、B兩站之間的距離AB=a﹣b,B、C兩站之間的距離BC=2a﹣b,B、D兩站之間的距離BD=a﹣2b﹣1.求:
(1)A、C兩站之間的距離AC;
(2)若A、C兩站之間的距離AC=180km,求C、D兩站之間的距離CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=26°,∠C=70°,AD平分∠BAC,
AE⊥BC于點E,EF⊥AD于點F.
(1)求∠DAC的度數(shù);
(2)求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(3,2)、(﹣1,0),若將線段BA繞點B順時針旋轉(zhuǎn)90°得到線段BA′,則點A′的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com