【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點,B是y=﹣上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內,y隨x的增大而減;②若點B的橫坐標為﹣3,則C點的坐標為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

【答案】B

【解析】

試題①∵雙曲線y=在第一象限,

∴k0,

在每個象限內,yx的增大而減小,故正確;

②∵B的橫坐標為3,

∴y=-=-1

∴BD=1,

∵4BD=3CD

∴CD=,

C的坐標為(3),故錯誤;

③∵C的坐標為(3,),

∴k=3×=4,故正確;

B點橫坐標為:x,則其縱坐標為:-,故C點縱坐標為:,

BC=+=,

△ABC的面積為:,故此選項錯誤.

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線p: 的頂點為C,與x軸相交于A、B兩點(點A在點B左側),點C關于x軸的對稱點為C′,我們稱以A為頂點且過點C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy(如圖)中,拋物線yax2+bx+2經過點A4,0)、B2,2),與y軸的交點為C

1)試求這個拋物線的表達式;

2)如果這個拋物線的頂點為M,求AMC的面積;

3)如果這個拋物線的對稱軸與直線BC交于點D,點E在線段AB上,且∠DOE45°,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點ORtABCAB邊上一點,∠ACB90°,⊙OAC相切于點D,與邊ABBC分別相交于點E,F

(1)求證:DEDF

(2)BC3,sinA時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O是△ABC的外接圓,AC是直徑,∠A=30°,BC=4,點DAB的中點,連接DO并延長交⊙O于點P.

(1)求劣弧PC的長結果保留π);

(2)過點PPFAC于點F,求陰影部分的面積結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,函數(shù)yx>0)的圖象經過點A,作ACx軸于點C

(1)求k的值;

(2)直線yax+ba≠0)圖象經過點Ax軸于點B,且OB=2AC.求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有一面12米長的墻,某農戶計劃用28米長的籬笆靠墻圍成一個矩形養(yǎng)雞場ABCD(籬笆只圍AB、BCCD三邊),其示意圖如圖所示.

(1)若矩形養(yǎng)雞場的面積為92平方米,求所用的墻長AD.(結果精確到0.1米)(參考數(shù)據(jù)=1.41,=1.73,=2.24)

(2)求此矩形養(yǎng)雞場的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,AB=BC,E為線段AB上一動點(不與點A,B重合),連接CE,將∠ACE的兩邊CECA分別繞點C順時針旋轉90°,得到射線CE,,CA,,過點AAB的垂線AD,分別交射線CE,,CA,于點FG.

(1)依題意補全圖形;

(2)若∠ACE=α,求∠AFC 的大。ㄓ煤α的式子表示);

(3)用等式表示線段AE,AFBC之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC12米,并測出此時太陽光線與地面成30°夾角.

1)求出樹高AB;

2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)

查看答案和解析>>

同步練習冊答案