精英家教網(wǎng)已知如圖,正方形ABCD的邊長為8,M在DC上,且DM=2,N是AC上的一動點,則DN+MN的最小值為( 。
A、9B、10C、11D、12
分析:要使DN+MN最小,首先應(yīng)分析點N的位置.根據(jù)正方形的性質(zhì):正方形的對角線互相垂直平分.知點D的對稱點是點B,連接MB交AC于點N,此時DN+MN最小值即是BM的長.
解答:精英家教網(wǎng)解:根據(jù)題意,連接BD、BM,則BM就是所求DN+MN的最小值,
在Rt△BCM中,BC=8,CM=6
根據(jù)勾股定理得:BM=
62+82
=10,
即DN+MN的最小值是10;
故選B
點評:此題的難點在于確定滿足條件的點N的位置:利用軸對稱的方法.然后熟練運用勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1997•重慶)已知如圖,正方形ABCD中,E為DC上一點,連接BE,作CF⊥BE于P交AD于F點,若恰好使得AP=AB.求證:E為DC中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,正方形AEDG的兩個頂點A、D都在⊙O上,AB為⊙O直徑,射線ED與⊙O的另一個交點為 C,試判斷線段AC與線段BC的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,正方形ABCD的邊長為6,菱形EFGH的三個頂點E,G,H分別在正方形ABCD邊AB,CD,DA上,AH=2,連接CF.過點F作FM垂直于DC,交直線DC于M.
(1)如果DG=2,那么FM=
2
2
 (畫出對應(yīng)圖形會變得更簡單!)
(2)當E,G在正方形邊上移動時,猜測FM的值是否發(fā)生改變,并證明你的結(jié)論.
(3)設(shè)DG=x,用含x的代數(shù)式表示△FCG的面積S;判斷S能否等于1,若能求x的值,若不能請說明理由.
(溫馨提示:不要忘記頂點E,G,H分別在正方形ABCD邊AB,CD,DA上哦。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

.已知如圖,正方形AEDG的兩個頂點A、D都在⊙O 上,AB為⊙O直徑,射線線ED與⊙O的另一個交點為 C,試判斷線段AC與線段BC的關(guān)系.

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年北京四中九年級第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

.已知如圖,正方形AEDG的兩個頂點A、D都在⊙O上,AB為⊙O直徑,射線線ED與⊙O的另一個交點為C,試判斷線段AC與線段BC的關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案