【題目】如圖1,△ABC中,AB=AC,∠BEF=∠DBC,∠BDC=2∠DEF,
(1)求證:BD=BE;
(2)如圖2,在(1)的下,EF⊥BC,BE=8,DG=5,求CD的長;
(3)在(2)的條件下,如圖3,過點C作CM⊥CB交BD的延長線于M,過點B作∠NBC=∠MBC,連接MN,且△BMN的面形為45,求BN的長.
【答案】(1)證明見解析;(2)CD=3;(3)BN=15,
【解析】
(1)證明∠BDE=∠BED,根據等角對等邊得出結論;
(2)作兩條垂線段,證明△BEF≌△NBD和△BGF≌△DNC,進而判斷出△BFG≌△DHC即可得出CD=3,
(3)先用射影定理求出DM==,BM=BD+DM=,CM==,進而得出BH=BM=,MH=2CM=,再用S△BMN=S△BMH+S△MNH得出NI,進而用△BCH∽△NIH,得出,即求出NH=,即可得出結論.
解:(1)∵AB=AC,
∴∠C=∠ABC,
∵∠BEF=∠DBC,
∴∠EFB=∠BDC,
設∠DEF=x,∠EDB=y,∠BEF=z,
在△EGD和△BGF中,x+y=z+2x,即y=x+z,即∠BDE=∠BED,
∴BD=BE,
(2)如圖2,過D作DH⊥BC,
∵EF⊥BC,
∴∠BFE=∠DHB=90°
由(1)知:BE=BD,
∵∠BEF=∠DBC,∠EFB=∠DHB=90°,
∴△BEF≌△BDH(AAS),
∴BF=DH,∠EBF=∠BDH,
∵∠ABC=∠ACB,∠BEF+∠ABC=90°,.
∴∠BEF+∠ACB=90°,
∵∠BEF=∠DBC,
∴∠DBC+∠ACB=90°
∴∠BDC=90°,
∴∠BDH+∠CDH=90°,
∴∠FBG=∠HDC,
∵∠BFG=∠DHC,BF=DH,
∴△BFG≌△DHC(ASA),
∴CD=BG=BD﹣DG=3;
(3)如圖3,由(2)知,CD=3,∠BDC=90°,
∴BC=,
在Rt△BCM中,CD⊥BM,
∴DM==,
∴BM=BD+DM=,CM==,
延長MC交BN于H,
∵∠NBC=∠MBC,BC⊥MH,
∴BH=BM=,MH=2CM=,
過點N作NI⊥MH交MH延長線于I,
∵△BMN的面形為45
∴NI=,
∵△BCH∽△NIH,
∴,
∴,
∴NH=,
∴BN=BH+NH==15,
科目:初中數學 來源: 題型:
【題目】某校為了豐富學生的校園生活,準備購進一批籃球和足球.其中籃球的單價比足球的單價多40元,用1500元購進的籃球個數與900元購進的足球個數相等.
(1)籃球和足球的單價各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOB,以O為圓心,以任意長為半徑作弧,分別交OA,OB于F,E兩點,再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線OP,過點F作FD∥OB交OP于點D.
(1)若∠OFD=116°,求∠DOB的度數;
(2)若FM⊥OD,垂足為M,求證:△FMO≌△FMD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,點D在BC上,BC平分∠ABE,BE∥AC,∠ADB=60°,∠CAD=2∠BDE,AB=14,BD=16,BE=4,則CD=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,、分別是、軸上兩點,其中與互為相反數.點是第二象限內一點,且,點是直線上一動點;
(1)若,且是等腰三角形,求的度數;
(2)點在直線上運動過程中,當最短時,求的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點E的坐標為(4,0),點F的坐標為(0,2),直線11經過點E和點F,直線l1與直線l2:y=2x相交于點A.
(1)求直線l1的表達式;
(2)求點A的坐標;
(3)求△AOE的面積;
(4)當點P是直線l1上的一個動點時,過點P作y軸的平行線PB交直線l2于點B,當線段PB=3時,請直接寫出P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知矩形的邊長,,點是邊上的一動點不同于、,是邊上的任意一點,連接、,過作交于,作交于.設的長為,則的面積關于的函數關系式是( )
A. B.
C. . D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com