【題目】如圖,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),DE⊥AC、DF⊥AB,垂足分別是E、F,且BF=CE.
(1)求證:DE=DF;
(2)當(dāng)∠A=90°時(shí),試判斷四邊形AFDE是怎樣的四邊形,并證明你的結(jié)論.
【答案】(1)證明見解析;(2)四邊形AFDE是正方形.理由見解析.
【解析】
試題
(1)由已知條件可由“HL”證Rt△DBF≌Rt△DCE,從而可得:DE=DF;
(2)由∠A=∠DFA=∠DEA=90°可證得四邊形AFDE是矩形,結(jié)合DF=DE,可得四邊形AFDE是正方形.
試題解析:
(1)∵D是BC的中點(diǎn),
∴BD=CD,
∵DE⊥AC,DF⊥AB,
∴∠BFD=∠CED=90°,
在Rt△BDF和Rt△CDE中, ,
∴Rt△BDF≌Rt△CDE(HL),
∴DE=DF;
(2)當(dāng)∠A=90°時(shí),四邊形AFDE是正方形.理由如下:
∵DE⊥AC,DF⊥AB,
∴∠DEA=∠DFA=90°,
又∵∠A=90°,
∴四邊形AFDE是矩形,
又∵DF=DE,
∴四邊形AFDE是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.
(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是 .
(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小賢與小杰在探究某類二次函數(shù)問題時(shí),經(jīng)歷了如下過程:
求解體驗(yàn):
(1)已知拋物線y=﹣x2+bx﹣3經(jīng)過點(diǎn)(﹣1,0),則b= ,頂點(diǎn)坐標(biāo) ,該拋物線關(guān)于點(diǎn)(0,1)成中心對(duì)稱的拋物線的表達(dá)式是 .
抽象感悟:
我們定義:對(duì)于拋物線y=ax2+bx+c(a≠0),以y軸上的點(diǎn)M(0,m)為中心,作該拋物線關(guān)于點(diǎn)M對(duì)稱的拋物線y',則我們又稱拋物線y'為拋物線y的“衍生拋物線”,點(diǎn)M為“衍生中心”.
(2)已知拋物線y=﹣x2﹣2x+5關(guān)于點(diǎn)(0,m)的衍生拋物線為y',若這兩條拋物線有交點(diǎn),求m的取值范圍.
問題解決:
(3)已知拋物線y=ax2+2ax﹣b(a≠0)若拋物線y的衍生拋物線為y'=bx2﹣2bx+a2(b≠0),兩拋物線有兩個(gè)交點(diǎn),且恰好是它們的頂點(diǎn),求a,b的值及衍生中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C為△ABD外接圓上的一動(dòng)點(diǎn)(點(diǎn)C不在上,且不與點(diǎn)B,D重合),∠ACB=∠ABD=45°.
(1)求證:BD是該外接圓的直徑;
(2)連結(jié)CD,求證:AC=BC+CD;
(3)若△ABC關(guān)于直線AB的對(duì)稱圖形為△ABM,連接DM,試探究,三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測(cè)得A,C之間的距離為12cm,點(diǎn)B,D之間的距離為16m,則線段AB的長(zhǎng)為
A. B. 10cmC. 20cmD. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+2x﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將這條拋物線向右平移m(m>0)個(gè)單位長(zhǎng)度,平移后的拋物線與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),若B,C是線段AD的三等分點(diǎn),則m的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x+6)2=51
(2)x2﹣2x=2x﹣1
(3)x2﹣x=2
(4)x(x﹣7)=8(7﹣x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com