【題目】如圖△ABC中,BE是∠ABC的外角平分線,BE交AC的延長線于E,∠A=∠E,求證:∠ACB=3∠A.

【答案】證明:∵BE是∠ABC的外角平分線, ∴∠EBD=∠EBC,
∵∠A=∠E,
∴∠EBD=∠EBC=∠A+∠E=2∠A,
∵∠ACB=∠E+∠EBC,
∴∠ACB=3∠A
【解析】根據(jù)角平分線定義求出∠EBD=∠EBC,根據(jù)角平分線性質(zhì)得出∠EBD=∠EBC=∠A+∠E,∠ACB=∠E+∠EBC,即可求出答案.
【考點精析】根據(jù)題目的已知條件,利用三角形的外角的相關(guān)知識可以得到問題的答案,需要掌握三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組中的四條線段成比例的是(

A.1cm,2cm,20cm,40cmB.1cm2cm,3cm,4cm

C.4cm2cm,1cm3cmD.5cm,10cm,15cm,20cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,A=ABC=90°,AD=10cm,BC=30cm,E是邊CD的中點,連接BE并延長與AD的延長線相交于點F.

(1)求證:四邊形BDFC是平行四邊形;

(2)若BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明到離家2.1千米的學(xué)校參加初三聯(lián)歡會,到學(xué)校時發(fā)現(xiàn)演出道具還放在家中,此時距聯(lián)歡會開始還有42分鐘,于是他立即勻速步行回家,在家拿道具用了1分鐘,然后立即勻速騎自行車返回學(xué)校.已知李明騎自行車到學(xué)校比他從學(xué)校步行到家用時少20分鐘,且騎自行車的速度是步行速度的3倍.
(1)李明步行的速度(單位:米/分)是多少?
(2)李明能否在聯(lián)歡會開始前趕到學(xué)校?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尤秀同學(xué)遇到了這樣一個問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.

求證:

該同學(xué)仔細(xì)分析后,得到如下解題思路:

先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計算,消去m,n即可得證.

(1)請你根據(jù)以上解題思路幫尤秀同學(xué)寫出證明過程.

(2)利用題中的結(jié)論,解答下列問題:

在邊長為3的菱形ABCD中,O為對角線AC,BD的交點,E,F(xiàn)分別為線段AO,DO的中點,連接BE,CF并延長交于點M,BM,CM分別交AD于點G,H,如圖2所示,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E、H分別在AB、AC上,已知BC=40cm,AD=30cm.

(1)求證:AEH∽△ABC;

(2)求這個正方形的邊長與面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“震災(zāi)無情人有情”.民政局將全市為四川受災(zāi)地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件.
(1)求打包成件的帳篷和食品各多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批帳篷和食品全部運往受災(zāi)地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.則民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來.
(3)在第(2)問的條件下,如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元.民政局應(yīng)選擇哪種方案可使運輸費最少?最少運輸費是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列尺規(guī)作圖,能判斷AD是△ABC邊上的高是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【閱讀】
我們分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,
其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M﹣N,若M﹣N>0,則M>N;若M﹣N=0,則M=N;若M﹣N<0,則M<N.
【運用】
利用“作差法”解決下列問題:
(1)小麗和小穎分別兩次購買同一種商品,小麗兩次都買了m千克商品,小穎兩次購買商品均花費n元,已知第一次購買該商品的價格為a元/千克,第二次購買該商品的價格為b元/千克(a,b是整數(shù),且a≠b),試比較小麗和小穎兩次所購買商品的平均價格的高低.
(2)奶奶提一籃子玉米到集貿(mào)市場去兌換大米,每2kg玉米兌換1kg大米,商販用秤稱得連籃子帶玉米恰好20kg,于是商販連籃子帶大米給奶奶共10kg,在這個過程中誰吃了虧?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案