【題目】如圖,拋物線yax2+bx+y軸交于點A,與x軸交于點B、C,連結(jié)AB,以AB為邊向右做平行四邊形ABDE,點E落在拋物線上,點D落在x軸上,若拋物線的對稱軸恰好經(jīng)過點D,且∠ABD60°,則平行四邊形的面積為_____

【答案】

【解析】

根據(jù)題意,可以求得點A的坐標(biāo),然后根據(jù)平行四邊形的性質(zhì)和二次函數(shù)的性質(zhì),可以求得OABD的長,從而可以求得平行四邊形ABDE的面積.

∵拋物線y=ax2+bx+y軸交于點A

∴點A的坐標(biāo)為(0,),

又∵四邊形ABDE是平行四邊形,點D在拋物線的對稱軸上,點A和點E關(guān)于對稱軸對稱,

BD=AE=2OB,

OA=,∠ABD=60°,∠AOB=90°,

OB=1,

BD=2

∴平行四邊形的面積為:2×=2,

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交ABD,延長AOOE,連接CD,CE,若CEO的切線,

1)求證:CDO的切線;

2)若BC3,AB5,求平行四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在地面A處利用測角儀觀測氣球C的仰角為37°,然后他沿正對氣球方向前進了40m到達地面B處,此時觀測氣球的仰角為45°.求氣球的高度是多少?參考數(shù)據(jù):sin37°≈0.60cos37°≈0.80,tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(m-2)x2+(m+3)x+m+2的圖象過點(0,5)

(1)求m的值,并寫出二次函數(shù)的表達式;

(2)求出二次函數(shù)圖象的頂點坐標(biāo)、對稱軸。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD,AB=6,BC=8,EBC邊上的一個動點(不與點B.C重合),連結(jié)AE,并作EFAE,交CD邊于點F,連結(jié)AF.設(shè)BE=x,CF=y.

1)求證:△ABE∽△ECF;

2)當(dāng)x為何值時,y的值為2;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次羽毛球賽中,甲運動員在離地面米的P點處發(fā)球,球的運動軌跡PAN看作一個拋物線的一部分,當(dāng)球運動到最高點A時,其高度為3米,離甲運動員站立地點O的水平距離為5米,球網(wǎng)BC離點O的水平距離為6米,以點O為原點建立如圖所示的坐標(biāo)系,乙運動員站立地點M的坐標(biāo)為(m,0.

1)求拋物線的解析式(不要求寫自變量的取值范圍);

2)求羽毛球落地點N離球網(wǎng)的水平距離(即NC的長);

3)乙原地起跳后可接球的最大高度為2.4米,若乙因為接球高度不夠而失球,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=90°,AB=AD,CB=CD,一個以點C為頂點的45°角繞點C旋轉(zhuǎn),角的兩邊與BADA交于點M,N,與BA,DA的延長線交于點E,F,連接AC.

1)在∠FCE旋轉(zhuǎn)的過程中,當(dāng)∠FCA=ECA時,如圖1,求證:AE=AF;

2)在∠FCE旋轉(zhuǎn)的過程中,當(dāng)∠FCA≠ECA時,如圖2,如果∠B=30°,CB=2,用等式表示線段AE,AF之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.

(1)請直接寫出D點的坐標(biāo).

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把一條拋物線上橫坐標(biāo)與縱坐標(biāo)相等的點叫做這條拋物線的不動點.如圖,在平面直角坐標(biāo)系xOy中,已知拋物線yx22x,其頂點為A

1)試求拋物線yx22x不動點的坐標(biāo);

2)平移拋物線yx22x,使所得新拋物線的頂點B是該拋物線的不動點,其對稱軸與x軸交于點C,且四邊形OABC是梯形,求新拋物線的表達式.

查看答案和解析>>

同步練習(xí)冊答案