【題目】某校組織1000名學(xué)生參加“展示我美麗祖國(guó)”慶國(guó)慶的自拍照片的評(píng)比活動(dòng).隨機(jī)機(jī)取一些學(xué)生在評(píng)比中的成績(jī)制成的統(tǒng)計(jì)圖表如下:
根據(jù)以上圖表提供的信息,解答下列問(wèn)題:
(1)寫(xiě)出表中a、b的數(shù)值:a ,b ;
(2)補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(3)如果評(píng)比成績(jī)?cè)?/span>95分以上(含95 分)的可以獲得一等獎(jiǎng),試估計(jì)該校參加此次活動(dòng)獲得一等 獎(jiǎng)的人數(shù).
【答案】(1)40,40%;(2)畫(huà)圖略;(3)100人.
【解析】
(1)首先求得抽取的樣本總數(shù),然后用樣本容量減去其他小組的人數(shù)即可求得a值,用80除以樣本容量即可求得b值;
(2)根據(jù)上題求得的數(shù)據(jù)補(bǔ)全統(tǒng)計(jì)圖即可;
(3)用總?cè)藬?shù)乘以獲得一等獎(jiǎng)的百分率即可求得獲得一等獎(jiǎng)的人數(shù).
解:(1)∵抽查的學(xué)生總數(shù)為:60÷30%=200(人),
∴a=200-80-60-20=40;=40%.
故填:40;40%.
(2)成績(jī)?cè)?/span>95≤x<100的學(xué)生人數(shù)所占百分比為:
故頻數(shù)分布表為:
分?jǐn)?shù)段 | 頻數(shù) | 百分比 |
80≤x<85 | 40 | 20% |
85≤x<90 | 80 | 40% |
90≤x<95 | 60 | 30% |
95≤x<100 | 20 | 10% |
頻數(shù)分布直方圖為:
(3)該校參加此次活動(dòng)獲得一等獎(jiǎng)的人數(shù)=1000×10%=100(人),
答:該校參加此次活動(dòng)獲得一等獎(jiǎng)的人數(shù)是100人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AB∥CD,點(diǎn)P是平面內(nèi)直線(xiàn)AB、CD外一點(diǎn)連接PA、PC。
(1)寫(xiě)出所給的四個(gè)圖形中∠APC、∠PAB、∠PCD之間的數(shù)量關(guān)系;
(2)證明圖(1)和圖(3)的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批發(fā)門(mén)市銷(xiāo)售兩種商品,甲種商品每件售價(jià)為300元,乙種商品每件售價(jià)為80元.新年來(lái)臨之際,該門(mén)市為促銷(xiāo)制定了兩種優(yōu)惠方案:
方案一:買(mǎi)一件甲種商品就贈(zèng)送一件乙種商品;
方案二:按購(gòu)買(mǎi)金額打八折付款.
某公司為獎(jiǎng)勵(lì)員工,購(gòu)買(mǎi)了甲種商品20件,乙種商品x(x≥20)件.
(1)分別寫(xiě)出優(yōu)惠方案一購(gòu)買(mǎi)費(fèi)用y1(元)、優(yōu)惠方案二購(gòu)買(mǎi)費(fèi)用y2(元)與所買(mǎi)乙種商品x(件)之間的函數(shù)關(guān)系式;
(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購(gòu)買(mǎi)了m件甲種商品,其余按方案二的優(yōu)惠辦法購(gòu)買(mǎi).請(qǐng)你寫(xiě)出總費(fèi)用w與m之間的關(guān)系式;利用w與m之間的關(guān)系式說(shuō)明怎樣購(gòu)買(mǎi)最實(shí)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,于點(diǎn)
(1)如圖1,若的角平分線(xiàn)交于點(diǎn),,,求的度數(shù);
(2)如圖2,點(diǎn)分別在線(xiàn)段上,將折疊,點(diǎn)落在點(diǎn)處,點(diǎn)落在點(diǎn)處,折痕分別為和,且點(diǎn),點(diǎn)均在直線(xiàn)上,若,試猜想與之間的數(shù)量關(guān)系,并加以證明;
(3)在(2)小題的條件下,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一個(gè)角度(),記旋轉(zhuǎn)中的為(如圖3),在旋轉(zhuǎn)過(guò)程中,直線(xiàn)與直線(xiàn)交于點(diǎn),直線(xiàn)與直線(xiàn)交于點(diǎn),若,是否存在這樣的兩點(diǎn),使為直角三角形?若存在,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)角的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由一些正整數(shù)組成的數(shù)表如下(表中下一行中數(shù)的個(gè)數(shù)是上一行中數(shù)的個(gè)數(shù)的2倍):
若規(guī)定坐標(biāo)號(hào)(m,n)表示第m行從左向右第n個(gè)數(shù),則(7,4)所表示的數(shù)是_____;(5,8)與(8,5)表示的兩數(shù)之積是_______;數(shù)2012對(duì)應(yīng)的坐標(biāo)號(hào)是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】補(bǔ)全證明過(guò)程
已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(___________________),
∴∠2=∠_________(等量代換)。
∴DB∥EC(同位角相等,兩直線(xiàn)平行)。
∴∠A=∠F(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn) O 是等邊△ABC 內(nèi)一點(diǎn),∠AOB=105°,∠BOC 等于α,將△BOC 繞點(diǎn) C 按 順時(shí)針?lè)较蛐D(zhuǎn) 60°得△ADC,連接 OD.
(1)求證:△COD 是等邊三角形.
(2)求∠OAD 的度數(shù).
(3)探究:當(dāng)α為多少度時(shí),△AOD 是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,平分,且交于點(diǎn),平分,且交于點(diǎn),與相交于點(diǎn),連接
求的度數(shù);
求證:四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是中線(xiàn),作關(guān)于的軸對(duì)稱(chēng)圖形.
(1)直接寫(xiě)出和的位置關(guān)系;
(2)連接,寫(xiě)出和的數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng),時(shí),在上找一點(diǎn),使得點(diǎn)到點(diǎn)與到點(diǎn)的距離之和最下小,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com