【題目】2020年,一場突然而來的新型冠狀病毒肺炎疫情阻擋了學(xué)生們開學(xué)的腳步,多地學(xué)校進行了“戰(zhàn)役在家,線上課堂”活動,保證學(xué)生離校不離學(xué),為減少初中生被網(wǎng)絡(luò)詐騙的案件,因此要求學(xué)生掌握防詐騙知識并進行網(wǎng)絡(luò)測評.為了解某校學(xué)生的測試情況,從中隨機抽取部分學(xué)生的成績進行統(tǒng)計,并把測試成績分為A.B.C.D四個等次,繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:
(1)a= ,b= ,c= ;
(2)請將條形統(tǒng)計圖補充完整,并計算表示C等次的扇形所對的圓心角的度數(shù);
(3)學(xué)校決定從A等次的甲、乙、丙、丁四名學(xué)生中,隨機選取兩名學(xué)生參加全市中學(xué)生防網(wǎng)絡(luò)詐騙知識競賽,請用列表法或畫樹狀圖法,求甲、乙兩名學(xué)生同時被選中的概率.
【答案】(1)2;45;20;(2)條形統(tǒng)計圖見詳解,72°;(3)
【解析】
(1)用等次的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再分別求出和等次的人數(shù),然后計算出、的值;
(2)先補全條形統(tǒng)計圖,然后用乘以等次所占的百分比得到等次的扇形所對的圓心角的度數(shù);
(3)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出甲、乙兩名男生同時被選中的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1),
;
,即;
,即;
(2)等次人數(shù)為,
條形統(tǒng)計圖補充為:
等次的扇形所對的圓心角的度數(shù);
故答案為2,45,20,;
(3)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中甲、乙兩名男生同時被選中的結(jié)果數(shù)為2,
所以甲、乙兩名男生同時被選中的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚傳統(tǒng)文化,某校開展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動.為了解七、八年級學(xué)生(七、八年級各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識競賽.現(xiàn)從兩個年級各隨機抽取20名學(xué)生的競賽成績(百分制)進行分析,過程如下:
收集數(shù)據(jù):
七年級:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級 | 0 | 1 | 0 | a | 7 | 1 |
八年級 | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級 | 78 | 75 | |
八年級 | 78 | 80.5 |
應(yīng)用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計該校七、八兩個年級學(xué)生在本次競賽中成績在90分以上的共有多少人?
(3)你認(rèn)為哪個年級的學(xué)生對經(jīng)典文化知識掌握的總體水平較好,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點坐標(biāo)為,并與軸交于點,點是對稱軸與軸的交點.
(1)求拋物線的解析式;
(2)如圖①所示, 是拋物線上的一個動點,且位于第一象限,連結(jié)BP、AP,求的面積的最大值;
(3)如圖②所示,在對稱軸的右側(cè)作交拋物線于點,求出點的坐標(biāo);并探究:在軸上是否存在點,使?若存在,求點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口A的費用分別為14元/噸,20元/噸;從甲、乙兩倉庫運送物資到港口B的費用分別為10元/噸、8元/噸.
(Ⅰ)設(shè)從甲倉庫運往A港口x噸,試填寫表格.
表一
港口 | 從甲倉庫運(噸) | 從乙倉庫運(噸) |
A港 |
|
|
B港 |
|
|
表二
港口 | 從甲倉庫運到港口費用(元) | 從乙倉庫運到港口費用(元) |
A港 | 14x |
|
B港 |
|
|
(Ⅱ)給出能完成此次運輸任務(wù)的最節(jié)省費用的調(diào)配方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線(a、b、c為常數(shù),a≠0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”,已知拋物線與其“夢想直線”交于A、B兩點(點A在點B的左側(cè)),與x軸負(fù)半軸交于點C.
(1)填空:該拋物線的“夢想直線”的解析式為 ,點A的坐標(biāo)為 ,點B的坐標(biāo)為 ;
(2)如圖,點M為線段BC上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標(biāo);
(3)在該拋物線的“夢想直線”上,是否存在點P,使△ACP為等腰三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,P是邊BC上的一動點(不與點B,C重合),點B關(guān)于直線AP的對稱點為E,連接AE,連接DE并延長交射線AP于點F,連接BF
(1)若,直接寫出的大。ㄓ煤的式子表示).
(2)求證:.
(3)連接CF,用等式表示線段AF,BF,CF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正值重慶一中85年校慶之際,學(xué)校計劃利用校友慈善基金購買一些平板電腦和打印機.經(jīng)市場調(diào)查,已知購買1臺平板電腦比購買3臺打印機多花費600元,購買2臺平板電腦和3臺打印機共需8400元.
(1)求購買1臺平板電腦和1臺打印機各需多少元?
(2)學(xué)校根據(jù)實際情況,決定購買平板電腦和打印機共100臺,要求購買的總費用不超過168000元,且購買打印機的臺數(shù)不低于購買平板電腦臺數(shù)的2倍.請問最多能購買平板電腦多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點B在反比例函數(shù)y=的圖象上,連接OA、OB,若OA⊥OB,OB=OA,則k=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com