【題目】如圖,已知:∠AOB=90°,OC平分∠AOB,點P在射線OC上.點E在射線OA上,點F在射線OB上,且∠EPF=90°.
(1)如圖1,求證:PE=PF;
(2)如圖2,作點F關于直線EP的對稱點F′,過F′點作FH⊥OF于H,連接EF′,F′H與EP交于點M.連接FM,圖中與∠EFM相等的角共有 個.
【答案】(1)見解析;(2)4.
【解析】
(1)過P作PG⊥OB于G,PH⊥AO于H,判定△PEH≌△PFG(AAS),即可得出PE=PF;
(2)依據軸對稱的性質以及等腰直角三角形的性質,即可得到與∠EFM相等的角.
解:(1)如圖1,過P作PG⊥OB于G,PH⊥AO于H,則∠PGF=∠PHE=90°,
∵OC平分∠AOB,PG⊥OB,PH⊥AO,
∴PH=PG,
∵∠AOB=∠EPF=90°,
∴∠PFG+∠PEO=180°,
又∵∠PEH+∠PEO=180°,
∴∠PEH=∠PFG,
∴△PEH≌△PFG(AAS),
∴PE=PF;
(2)由軸對稱可得,∠EFM=∠EF′M,
∵F′H⊥OF,AO⊥OB,
∴AO∥F′F,
∴∠EF′M=∠AEF′,
∵∠AEF′+∠OEF=∠OFE+∠OEF=90°,
∴∠AEF′=∠OFE,
由題可得,P是FF′的中點,EF=EF′,
∴EP平分∠FEF′,
∵PE=PF,∠EPF=90°,
∴∠PEF=45°=∠PEF′,
又∵∠AOP=∠AOB=45°,且∠AEP=∠AOP+∠OPE,
∴∠AEF′+45°=45°+∠OPE,
∴∠AEF′=∠OPE,
∴與∠EFM相等的角有4個:∠EF′M,∠AEF′,∠EFO,∠EPO.
故答案為:4.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點D為AB的中點.若點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
(1)若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點E.在△ABC外有一點F,使FA⊥AE,F(xiàn)C⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.求證:①ME⊥BC;②DE=DN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,∠BAC=60°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作菱形ADEF,使∠DAF=60°,連接CF.
(1)觀察猜想:如圖1,當點D在線段BC上時,①AB與CF的位置關系為: ;
②BC,CD,CF之間的數量關系為: .
(2)數學思考:如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)拓展延伸:如圖3,當點D在線段BC的延長線上時,設AD與CF相交于點G,若已知AB=4,CD=AB,求AG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調控的手段達到節(jié)水的目的,該市自來水收費的價目表如下(注:水費按月份結算):
價目表 | |
每月用水量 | 單價 |
不超過6的部分 | 2元/ |
超出6不超出10的部分 | 4元/ |
超出10的部分 | 8元 |
請根據上表的內容解答下列問題:
(1)填空:若該戶居民2月份用水5,則應交水費 元;3月份用水8,則應收水費 元;
(2)若該戶居民4月份用水(其中),則應交水費多少元(用含的代數式表示,并化簡);
(3)若該戶居民5、6兩個月共用水14(6月份用水量超過了5月份),設5月份用水,直接寫出該戶居民5、6兩個月共交水費多少元(用含的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在( )
A.在∠A、∠B兩內角平分線的交點處
B.在AC、BC兩邊垂直平分線的交點處
C.在AC、BC兩邊高線的交點處
D.在AC、BC兩邊中線的交點處
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:是最小的正整數,且、滿足,請回答問題:
(1)請直接寫出、、的值. , , .
(2)、、所對應的點分別為、、,點為一動點,其對應的數為,點在、之間運動時,請化簡式子:(請寫出化簡過程)
(3)在(1)(2)的條件下,點、、開始在數軸上運動,若點以每秒個單位長度的速度向左運動,同時,點和點分別以每秒個單位長度和個單位長度的速度向右運動,假設經過秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為.請問:的值是否隨著時間的變化而改變?若變化,請說明理由:若不變,請求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每個正方形從第三象限的頂點開始,按順時針方向順序,依次記為A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐標原點O,各邊均與x軸或y軸平行,若它們的邊長依次是2,4,6,…,則頂點A20的坐標為 ( )
A. (5,5) B. (5,-5) C. (-5,5) D. (-5,-5)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學完《全等三角形》知識后知道:滿足“SSA”的兩個三角形不一定全等,如圖①,∠A與AB分別是△ABC與△ABD公共角與公共邊,且AC=AD,但△ABC與△ABD不全等,但在特殊條件下“SSA”也可以確定兩個三角形全等.如圖②,∠MAB為銳角,AB=5,點B到射線AM的距離為3,點C在射線AM上,BC=x,當x的取值范圍是__________時,△ABC的形狀、大小是唯一確定。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com