【題目】如圖,已知E是ABCD中BC邊的中點,連接AE并延長AE交DC的延長線于點F.
(1)求證:△ABE≌△FCE.
(2)連接AC、BF,若∠AEC=2∠ABC,求證:四邊形ABFC為矩形。
【答案】(1)見解析;(2)見解析
【解析】
(1)由ABCD為平行四邊形,根據平行四邊形的對邊平行得到AB與DC平行,根據兩直線平行內錯角相等得到一對角相等,由E為BC的中點,得到兩條線段相等,再由對應角相等,利用ASA可得出三角形ABE與三角形FCE全等;
(2)由△ABE與△FCE全等,根據全等三角形的對應邊相等得到AB=CF;再由AB與CF平行,根據一組對邊平行且相等的四邊形為平行四邊形得到ABFC為平行四邊形,根據平行四邊形的對角線互相平分得到AE=EF,BE=EC;再由∠AEC為三角形ABE的外角,利用外角的性質得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角對等邊可得出AE=BE,可得出AF=BC,利用對角線相等的平行四邊形為矩形可得出ABFC為矩形.
證明:(1)∵四邊形ABCD為平行四邊形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E為BC的中點,
∴BE=CE,
在△ABE和△FCE中,
∵ ,
∴△ABE≌△FCE(ASA);
(2)∵△ABE≌△FCE,
∴AB=CF,
又∵四邊形ABCD為平行四邊形,
∴AB∥CF,
∴四邊形ABFC為平行四邊形,
∴BE=EC,AE=EF,
又∵∠AEC=2∠ABC,且∠AEC為△ABE的外角,
∴∠AEC=∠ABC+∠EAB,
∴∠ABC=∠EAB,
∴AE=BE,
∴AE+EF=BE+EC,即AF=BC,
則四邊形ABFC為矩形.
科目:初中數學 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①BC與CF的位置關系為: .
②BC,CD,CF之間的數量關系為: ;(將結論直接寫在橫線上)
(2)數學思考
如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是小江家的住房戶型結構圖.根據結構圖提供的信息,解答下列問題:
(1)用含a、b的代數式表示小江家的住房總面積S;
(2)小江家準備給房間重新鋪設地磚.若臥室所用的地磚價格為每平方米50元;衛(wèi)生間、廚房和客廳所用的地磚價格為每平方米40元.請用含a、b的代數式表示鋪設地磚的總費用W;
(3)在(2)的條件下,當a=6,b=4時,求W的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OF,OD分別是∠AOE,∠BOE的平分線.
(1)寫出∠DOE的補角;
(2)若∠BOE=62°,求∠AOD和∠EOF的度數;
(3)試問射線OD與OF之間有什么特殊的位置關系?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,貨輪A在航行過程中,發(fā)現燈塔B在它北偏東60°的方向上,貨輪C在它南偏東30°方向上.則下列結論:①∠NAB=60°;②∠WAC=120°;③圖中∠NAC的補角有兩個,分別是∠SAC和∠EAB;④圖中有4對互余的角,其中正確的個數有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A和點B在數軸上對應的數分別為a和b,且(a+6)2+|b﹣8|=0.
(1)求線段AB的長;
(2)點C在數軸上所對應的數為x,且x是方程x﹣1=x+1的解,在線段AB上是否存在點D,使得AD+BD=CD?若存在,請求出點D在數軸上所對應的數,若不存在,請說明理由;
(3)在(2)的條件下,線段AD和BC分別以6個單位長度/秒和5個單位長度/秒的速度同時向右運動,運動時間為t秒,M為線段AD的中點,N為線段BC的中點,若MN=12,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將正方形繞點逆時針旋轉后得到正方形,依此方式,繞點連續(xù)旋轉2019次得到正方形,如果點的坐標為(1,0),那么點的坐標為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級全體同學參加了某項捐款活動,隨機抽查了部分同學捐款的情況統(tǒng)計如圖所示.
(1)本次共抽查學生 人,并將條形圖補充完整;
(2)捐款金額的眾數是 平均數是 中位數為
(3)在八年級600名學生中,捐款20元及以上(含20元)的學生估計有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=30,BC=28,AC=26.求△ABC的面積.
某學習小組經過合作交流給出了下面的解題思路,請你按照他們的解題思路完成解答過程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com