精英家教網 > 初中數學 > 題目詳情

【題目】如圖,菱形ABCD的對角線ACBD相交于點O,過點DDE//AC,且DE:AC=12,連接CE、OE,連接AEOD于點F

1)求證:OE=CD;

2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.

【答案】1)證明見解析;(2AE=

【解析】

1)先證得OCED是平行四邊形,再根據菱形的對角線互相垂直得到∠COD=90°,證得OCED是矩形,即可證明OE=CD;

2)由菱形的性質和勾股定理求出ACCE的長,最后根據勾股定理解答即可..

解:(1)∵在菱形ABCD中,

OC=ACACBD.

又∵DE:AC=12

DE=AC

DE=OC

DE//AC,

∴四邊形OCED是平行四邊形.

∵∠COD=90°

∴平行四邊形OCED是矩形.

OE=CD

2)∵在姜形ABCD中,

AB=BC=CD=AD=2

∵∠ABC=60°,

∴△ABC是等邊三角形,

AC=AB=2AO=1.

∵在矩形OCED中,CE=OD=

又∵矩形DOCE中,∠OCE=90°

∴在RtACE中,AE=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,且OA=OB.

(1)求證:四邊形ABCD是矩形;

(2)若AB=6,AOB=120°,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的口袋中有3個分別標有數字-1、1、2的小球,它們除標的數字不同外無其他區(qū)別.

(1)隨機地從口袋中取出一小球,求取出的小球上標的數字為負數的概率;

(2)隨機地從口袋中取出一小球,放回后再取出第二個小球,求兩次取出的數字的和等于0的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.

1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

若點Q的運動速度與點P的運動速度相等,經過1s后,△BPD與△CQP是否全等,請說明理由;

若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

2)若點Q中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2019423日,是第23個世界讀書日.為了推進中華傳統(tǒng)文化教育,營造濃郁的讀書氛圍,我區(qū)某學校舉辦了讓讀書成為習慣,讓書香飄滿校園主題活動,為此,特為每個班級訂購了一批新的圖書.初一年級兩個班訂購圖書情況如下表:

老舍文集(套)

四大名著(套)

總費用(元)

初一(1)班

2

2

330

初一(2)班

3

2

380

1)求老舍文集和四大名著每套各多少元?

2)學校準備再購買老舍文集和四大名著共10套,總費用超過500元而不超過800元,問學校有哪幾種購買方案?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】x,y定義一種新運算F,規(guī)定:Fx,y)=ax+by(其中a,b均為非零常數).例如:F3,4)=3a+4b

1)已知F1,﹣1)=﹣1,F2,0)=4

①求ab的值;

②已知關于p的不等式組,求p的取值范圍;

2)若運算F滿足,請你直接寫出Fm,m)的取值范圍(用含m的代數式表示,這里m為常數且m0).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把一副三角板按如圖放置,其中ABC=DEB=90°,A=45°,D=30°,斜邊AC=BD=10,若將三角板DEB繞點B逆時針旋轉45°得到DEB,則點A在DEB的(

A.內部 B.外部 C.邊上 D.以上都有可能

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,在ABC中,AB=AC=20cmBDACD,且BD=16cm.點M從點A出發(fā),沿AC方向勻速運動,速度為4cm/s;同時點PB點出發(fā),沿BA方向勻速運動,速度為lcm/s,過點P的動直線PQAC,交BC于點Q,連結PM,設運動時間為t(s)(0t5),解答下列問題:

1)線段AD=___cm;

2)求證:PB=PQ;

3)當t為何值時,以P、QD、M為頂點的四邊形為平行四邊形.

查看答案和解析>>

同步練習冊答案