【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)DAB的中點(diǎn),AC=3,cosA=,將△DAC沿著CD折疊后,點(diǎn)A落在點(diǎn)E處,則BE的長為( 。

A. 5 B. 4 C. 7 D. 5

【答案】C

【解析】

連接AE,根據(jù)余弦的定義求出AB,根據(jù)勾股定理求出BC,根據(jù)直角三角形的性質(zhì)求出CD,根據(jù)面積公式出去AE,根據(jù)翻轉(zhuǎn)變換的性質(zhì)求出AF,根據(jù)勾股定理、三角形中位線定理計(jì)算即可.

解:連接AE,

AC=3,cosCAB=

AB=3AC=9,

由勾股定理得,BC==6,

ACB=90°,點(diǎn)DAB的中點(diǎn),

CD=AB=,

SABC=×3×6=9

∵點(diǎn)DAB的中點(diǎn),

SACD=SABC=,

由翻轉(zhuǎn)變換的性質(zhì)可知,S四邊形ACED=9,AECD,

×CD×AE=9

解得,AE=4,

AF=2

由勾股定理得,DF==,

AF=FE,AD=DB,

BE=2DF=7,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD對(duì)角線AC上一動(dòng)點(diǎn),點(diǎn)E在射線BC上,且PBPE,連接PD,OAC中點(diǎn).

(1)如圖1,當(dāng)點(diǎn)P在線段AO上時(shí),試猜想PEPD的數(shù)量關(guān)系和位置關(guān)系,不用說明理由;

(2)如圖2,當(dāng)點(diǎn)P在線段OC上時(shí),(1)中的猜想還成立嗎?請(qǐng)說明理由;

(3)如圖3,當(dāng)點(diǎn)PAC的延長線上時(shí),請(qǐng)你在圖3中畫出相應(yīng)的圖形(尺規(guī)作圖,保留作圖痕跡,不寫作法),并判斷(1)中的猜想是否成立?若成立,請(qǐng)直接寫出結(jié)論;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,邊上的中線,過點(diǎn)于點(diǎn),過點(diǎn)平行線,交的延長線于點(diǎn),在延長線上截得,連結(jié)、.若,則四邊形的面積等于________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),直線軸于點(diǎn)

(1)求直線的表達(dá)式和點(diǎn)的坐標(biāo);

(2)在直線上有一點(diǎn),使得的面積為4,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的平分線交于點(diǎn),過點(diǎn)的平分線于點(diǎn)

求證:四邊形是矩形;

當(dāng)滿足什么條件時(shí),四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC放在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、點(diǎn)B、點(diǎn)C均落在格點(diǎn)上.

(I)計(jì)算△ABC的邊AC的長為_____

(II)點(diǎn)P、Q分別為邊AB、AC上的動(dòng)點(diǎn),連接PQ、QB.當(dāng)PQ+QB取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點(diǎn)P、Q的位置是如何找到的_____(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC△ADC都是等邊三角形,點(diǎn)EF同時(shí)分別從點(diǎn)B,A出發(fā),以相同的速度各自沿BAAD的方向運(yùn)動(dòng)到點(diǎn)A,D停止,連結(jié)EC,FC.

(1)在點(diǎn)EF運(yùn)動(dòng)的過程中,∠ECF的大小是否隨之變化?請(qǐng)說明理由

(2)在點(diǎn)EF運(yùn)動(dòng)的過程中,A,EC,F為頂點(diǎn)的四邊形的面積變化了嗎?請(qǐng)說明理由

(3)連結(jié)EF,在圖中找出所有和∠ACE相等的角并說明理由

(4)若點(diǎn)E,F在射線BA射線AD上繼續(xù)運(yùn)動(dòng)下去,(1)中的結(jié)論還成立嗎?直接寫出結(jié)論,不必說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BD平分∠ABF,且交AE于點(diǎn)D.

(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)設(shè)AP交BD于點(diǎn)O,交BF于點(diǎn)C,連接CD,當(dāng)AC⊥BD時(shí),求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市文化宮學(xué)習(xí)十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學(xué)捐贈(zèng)書包活動(dòng)首次用2000元在商店購進(jìn)一批學(xué)生書包,活動(dòng)進(jìn)行后發(fā)現(xiàn)書包數(shù)量不夠,又購進(jìn)第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價(jià)貴了4元,結(jié)果第二批用了6300元.

(1)求文化官第一批購進(jìn)書包的單價(jià)是多少?

(2)商店兩批書包每個(gè)的進(jìn)價(jià)分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案