分析 (1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;
(2)首先設(shè)AE=x,則EP=4-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+12=(4-x)2,即可求得答案AE的長(zhǎng),易證得△DPH∽△AEP,然后由相似三角形的對(duì)應(yīng)邊成比例,求得答案;
(3)首先過(guò)B作BQ⊥PH,垂足為Q,易證得△ABP≌△QBP,進(jìn)而得出△BCH≌△BQH,即可得出AP+HC=PH.
解答 (1)證明:∵PE=BE,
∴∠EPB=∠EBP,
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠BPH=∠PBC.
又∵四邊形ABCD為正方形
∴AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)解:∵AP=1,
∴PD=AD-AP=4-1=3,
設(shè)AE=x,則EP=4-x,
在Rt△AEP中,AE2+AP2=PE2,
即x2+12=(4-x)2,
解得:x=$\frac{15}{8}$,
∵∠A=∠D=∠ABC=90°,
∴∠AEP+∠APE=90°,
由折疊的性質(zhì)可得:∠EPG=∠ABC=90°,
∴∠APE+∠DPH=90°,
∴∠AEP=∠DPH,
∴△DPH∽△AEP,
∴$\frac{DH}{AP}$=$\frac{DP}{AE}$,
∴$\frac{DH}{1}$=$\frac{3}{\frac{15}{8}}$,
解得:DH=$\frac{8}{5}$;
(3)證明:過(guò)B作BQ⊥PH,垂足為Q,
由(1)知,∠APB=∠BPH,
在△ABP與△QBP中,
$\left\{\begin{array}{l}{∠A=∠BQP=90°}\\{∠APB=∠BPH}\\{BP=BP}\end{array}\right.$,
∴△ABP≌△QBP(AAS),
∴AP=QP,BA=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,
∴△BCH和△BQH是直角三角形,
在Rt△BCH與Rt△BQH中,
$\left\{\begin{array}{l}{BC=BQ}\\{BH=BH}\end{array}\right.$,
∴Rt△BCH≌Rt△BQH(HL),
∴CH=QH,
∴AP+HC=PH.
點(diǎn)評(píng) 此題屬于四邊形的綜合題.考查了正方形的性質(zhì)、折疊的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理等知識(shí).注意掌握折疊前后圖形的對(duì)應(yīng)關(guān)系、注意掌握方程思想的應(yīng)用,注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-7x+7 | B. | y=-7x+1 | C. | y=-7x-17 | D. | y=-7x+25 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$cm2 | B. | $\frac{3}{2}$cm2 | C. | $\sqrt{3}$cm2 | D. | (3-$\sqrt{3}$)cm2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
營(yíng)業(yè)員 | 小王 | 小李 |
月銷售件數(shù) | 200 | 150 |
月總收入(單位:元) | 2500 | 2250 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
銷售額/萬(wàn)元 | 29 | 32 | 34 | 38 | 48 | 55 |
專賣店/個(gè)數(shù) | 1 | 1 | 3 | 2 | 2 | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com