【題目】對于一次函數(shù),我們稱函數(shù)
為它的m分函數(shù)(其中m為常數(shù)).
例如,的4分函數(shù)為:當時,;當時,.
(1)如果的2分函數(shù)為,
① 當時, ; ②當時, .
(2)如果的-1分函數(shù)為,求雙曲線與的圖象的交點坐標;
(3)從下面兩問中任選一問作答:
①設(shè)y=x+2的m分函數(shù)為y ,如果拋物線y=x與y的圖象有且只有一個公共點,直接寫出m的取值范圍。
②如果點A(0,t)到y=x+2的0分函數(shù)y[0]的圖象的距離小于1,直接寫出t的取值范圍。
【答案】(1)①3,②4或-2;(2)(-2,-1);(3)①無解;②2<t<2+,2<t<2.
【解析】
(1)先寫出函數(shù)的2分函數(shù),代入即可,注意,函數(shù)值是3時分兩種情況代入;
(2)先寫出函數(shù)的-1分函數(shù),分兩種情況和雙曲線解析式聯(lián)立求解即可;
(3)①先寫出函數(shù)m分函數(shù),聯(lián)立方程組,轉(zhuǎn)化成方程求解即可,
②先寫出函數(shù)0分函數(shù),根據(jù)點到直線的距離公式求出t的范圍.
(1)y=x+1的2分函數(shù)為:當x2時,y=x+1;當x>2時,y=x1.
當x=4時,y=41=3,
當y=3時,
如果x2,則有,x+1=3,
∴x=2,
如果x>2,則有,x1=3,
∴x=4,
故答案為3,4或2;
(2)當y=x+1的1分函數(shù)為y ,
∴當x1時,y=x+1①,
當x>1時,y=x1②,
∵雙曲線y= ③,
聯(lián)立①③解得, ,
∴它們的交點坐標為(2,1),
聯(lián)立②③時,方程無解,
∴雙曲線y=與y[1]的圖象的交點坐標(2,1);
(3)①∵y=x+2的m分函數(shù)為y,
∴xm時,y=x+2①,
當x>m時,y=x2②,
∵拋物線y=x③與y的圖象有且只有一個公共點,
聯(lián)立①③,則有x=x+2,
∴x=2,或x=1,
∵只有一個公共點,
∴2m<1
聯(lián)立②③,
∴此方程無解,
②∵y=x+2的0分函數(shù)y ,
∴當x0時,y=x+2,
∴d= <1,
∴2<t<2+,
∵x0,
∴2<t<2+,
當x>0時,y =x2,
∴d=|0t2|<1,
∴2<t<2+,
∵x>0,
∴2<t<2,
∴點A(0,t)到y=x+2的0分函數(shù)y 的圖象的距離小于1,t的取值范圍2<t<2+,2<t<2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑作交BC于點D,過點D作FE⊥AB于點E,交AC的延長線于點F.
(1)求證: EF與相切;
(2)若AE=6,,求EB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商店要出售一種商品,出售時要在進價的基礎(chǔ)上加上一定的利潤,其銷售量(千克)與售價(元)之間的關(guān)系如下表.
銷量/千克 | 售價/元 |
1 | 1+0.3+0.05 |
2 | 2+0.6+0.05 |
3 | 3+0.9+0.05 |
4 | 4+1.2+0.05 |
... | ... |
(1)寫出用含的式子表示售價的計算公式。
(2)此商品的銷售量為10千克時,售價為多少?
(3)當售價為26.05元時,商品的銷售量為多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個數(shù)表有7行7列,設(shè)aij表示第i行第j列上的數(shù)(其中i=1, 2, 3, ...7,j=1, 2, 3, …,7)
例如:第5行第3列上的數(shù)a53=7.
則: (1) (a23 -a22)+(a52 –a53)= _________.
(2)此數(shù)表中的四個數(shù)anp,ank, amp,amk.滿足(anp -ank)+(amk -amp)=_ _________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-4,2)、B(0,4)、C(0,2),
(1)畫出△ABC關(guān)于點C成中心對稱的△A1B1C;平移△ABC,若點A的對應(yīng)點A2的坐標為(0,-4),畫出平移后對應(yīng)的△A2B2C2;
(2)△A1B1C和△A2B2C2關(guān)于某一點成中心對稱,則對稱中心的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過坐標原點O和x軸上另一點E,頂點M的坐標為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)將矩形ABCD以每秒1個單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當t=時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,,,過點的直線交矩形的邊于點,且點不與點、重合,過點作,交軸于點,交軸于點.
(Ⅰ)若為等腰直角三角形.
①直接寫出此時點的坐標:______;直線的解析式為______;
②在軸上另有一點的坐標為,請在直線和軸上分別找一點、,使的周長最小,并求出此時點的坐標和周長的最小值.
(Ⅱ)如圖2,過點作交軸于點,若以、、、為頂點的四邊形是平行四邊形,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月初某地豬肉價格大幅度下調(diào),下調(diào)后每千克豬肉的價格是原價格的,原來用120元買到的豬肉下調(diào)后可多買2kg.4月中旬豬肉價格開始回升,經(jīng)過兩個月后,豬肉價格上調(diào)為每千克28.8元.
(1)求4月初豬肉價格下調(diào)后變?yōu)槊壳Э硕嗌僭?/span>
(2)求5、6月份豬肉價格的月平均增長率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com