【題目】如圖,拋物線yx2在第一象限內(nèi)經(jīng)過(guò)的整數(shù)點(diǎn)(橫坐標(biāo),縱坐標(biāo)都為整數(shù)的點(diǎn))依次為A1,A2,A3,…An,….將拋物線yx2沿直線Lyx向上平移,得一系列拋物線,且滿足下列條件:①拋物線的頂點(diǎn)M1,M2,M3,…Mn,…都在直線Lyx上;②拋物線依次經(jīng)過(guò)點(diǎn)A1,A2,A3An,….則頂點(diǎn)M1的坐標(biāo)為_____,頂點(diǎn)M2的坐標(biāo)為_____,頂點(diǎn)M2018的坐標(biāo)為_____

【答案】1,1), 3,3), 40354035).

【解析】

根據(jù)拋物線的解析式結(jié)合整數(shù)點(diǎn)的定義,找出點(diǎn)An的坐標(biāo)為(n,n2),設(shè)點(diǎn)Mn的坐標(biāo)為(a,a),則以點(diǎn)Mn為頂點(diǎn)的拋物線解析式為y=(xa2a,由點(diǎn)An的坐標(biāo)利用待定系數(shù)法,即可求出a值,將其代入點(diǎn)Mn的坐標(biāo)即可得出結(jié)論.

解:∵拋物線yx2在第一象限內(nèi)經(jīng)過(guò)的整數(shù)點(diǎn)(橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))依次為A1,A2,A3,…,An,…,

∴點(diǎn)An的坐標(biāo)為(nn2).

設(shè)點(diǎn)Mn的坐標(biāo)為(a,a),則以點(diǎn)Mn為頂點(diǎn)的拋物線解析式為y=(xa2+a,

∵點(diǎn)Ann,n2)在拋物線y=(xa2+a上,

n2=(na2+a,解得:a2n1a0(舍去),

Mn的坐標(biāo)為(2n1,2n1),

∴頂點(diǎn)M1的坐標(biāo)為(11),頂點(diǎn)M2的坐標(biāo)為(3,3),頂點(diǎn)M2018的坐標(biāo)為(4035,4035),

故答案為:(1,1),(3,3),(4035,4035).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面長(zhǎng)為34米的墻,用鐵柵欄圍成一個(gè)矩形自行車場(chǎng)地ABCD,在ABBC邊各有一個(gè)2米寬的小門(mén)(不用鐵柵欄).設(shè)矩形ABCD的邊AD長(zhǎng)為x米,AB長(zhǎng)為y米,矩形的面積為S平方米,且xy

1)若所用鐵柵欄的長(zhǎng)為40米,求yx的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;

2)在(1)的條件下,求Sx的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場(chǎng)地的面積為192平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AC=6,BD=6,EBC邊的中點(diǎn),P,M分別是AC,AB上的動(dòng)點(diǎn),連接PE,PM,則PE+PM的最小值是( 。

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線y=-+bx+c經(jīng)過(guò)A(-1,0)、B(5,0)兩點(diǎn),頂點(diǎn)為P.

求:(1)求b,c的值;

(2)求△ABP的面積;

(3)若點(diǎn)C()和點(diǎn)D(,)在該拋物線上,則當(dāng)時(shí),請(qǐng)寫(xiě)出的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小紅的父母開(kāi)了一個(gè)小服裝店,出售某種進(jìn)價(jià)為元的服裝,現(xiàn)每件元,每星期可賣件.該同學(xué)對(duì)市場(chǎng)作了如下調(diào)查:每降價(jià)元,每星期可多賣件;每漲價(jià)元,每星期要少賣件.

小紅已經(jīng)求出在漲價(jià)情況下一個(gè)星期的利潤(rùn)(元)與售價(jià)(元)(為整數(shù))的函數(shù)關(guān)系式為,請(qǐng)你求出在降價(jià)的情況下的函數(shù)關(guān)系式;

在降價(jià)的條件下,問(wèn)每件商品的售價(jià)定為多少時(shí),一個(gè)星期的利潤(rùn)恰好為元?

問(wèn)如何定價(jià),才能使一星期獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知是等腰直角三角形,,點(diǎn)DBC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DGDE上,連接AE,BG

試猜想線段BGAE的數(shù)量關(guān)系是______;

將正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn),

判斷中的結(jié)論是否仍然成立?請(qǐng)利用圖2證明你的結(jié)論;

,當(dāng)AE取最大值時(shí),求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).

(1)求證無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;

(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,求k的取值范圍;

(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形 ABCD 的對(duì)角線 AC BD 相交于點(diǎn) O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD 和正方形ECGF,其中E、H分別為AD、BC中點(diǎn),連結(jié)AF、HG、AH.

1)求證:

2)求證:;

查看答案和解析>>

同步練習(xí)冊(cè)答案