【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B(A左B右),與y軸交于C,直線y=﹣x+5經(jīng)過點(diǎn)B、C.
(1)求拋物線的解析式;
(2)點(diǎn)P為第二象限拋物線上一點(diǎn),設(shè)點(diǎn)P橫坐標(biāo)為m,點(diǎn)P到直線BC的距離為d,求d與m的函數(shù)解析式;
(3)在(2)的條件下,若∠PCB+∠POB=180°,求d的值.
【答案】(1)y=﹣x2+x+5(2)d=m2﹣m(﹣2<m<0)(3)
【解析】
(1)首先求出B、C兩點(diǎn)坐標(biāo),再利用待定系數(shù)法即可解決問題;
(2)如圖1中,作PE⊥BC于E,作PF∥AB交BC于F.只要證明△PEF是等腰直角三角形,想辦法求出PF(用m表示),即可解決問題;
(3)首先證明O、B、C、P四點(diǎn)共圓,推出∠CPB=∠COB=90°,可得PH=BC=,由P(m,﹣m2+m+5),H(,),可得(m﹣)2+(﹣m2+m+5﹣)2=,解方程去m,再利用(2)中結(jié)論即可解決問題.
(1)∵直線y=﹣x+5經(jīng)過點(diǎn)B、C,
∴B(5,0),C(0,5),
把B、C坐標(biāo)代入y=﹣x2+bx+c得到: ,
解得,
∴二次函數(shù)的解析式為y=﹣x2+x+5;
(2)如圖1中,作PE⊥BC于E,作PF∥AB交BC于F.
∵P(m,﹣m2+m+5),
∵PF∥AB,
∴點(diǎn)F的縱坐標(biāo)為﹣m2+m+5,
則有﹣m2+m+5=﹣x+5,
∴x=m2﹣m,
∴PF=m2﹣m﹣m=m2﹣m,
∵OB=OC,∠BOC=90°,
∴∠EFP=∠OBC=45°,∵PE⊥EF,
∴△PEF是等腰直角三角形,
∴d=PE=PF=m2﹣m(﹣2<m<0);
(3)如圖2中,取BC的中點(diǎn)H,連接PH.
∵∠PCB+∠POB=180°,
∴O、B、C、P四點(diǎn)共圓,
∴∠CPB=∠COB=90°,
∴PH=BC=,
∵P(m,﹣m2+m+5),H(,),
∴(m﹣)2+(﹣m2+m+5﹣)2=,
整理得:m(m﹣5)(m2﹣m﹣2)=0,
解得m=0或5或﹣1或2,
∵P在第二象限,
∴m=﹣1,
∴d=m2﹣m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某一過街天橋的示意圖,天橋高為米,坡道傾斜角為,在距點(diǎn)米處有一建筑物.為方便行人上下天橋,市政部門決定減少坡道的傾斜角,但要求建筑物與新坡角處之間地面要留出不少于米寬的人行道.
若將傾斜角改建為(即),則建筑物是否要拆除?()
若不拆除建筑物,則傾斜角最小能改到多少度(精確到)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明的手機(jī)沒電了,現(xiàn)有一個(gè)只含A,B,C,D四個(gè)同型號(hào)插座的插線板(如圖,假設(shè)每個(gè)插座都適合所有的充電插頭,且被選中的可能性相同),請(qǐng)計(jì)算:
(1)若小明隨機(jī)選擇一個(gè)插座插入,則插入A的概率為 ;
(2)現(xiàn)小明對(duì)手機(jī)和學(xué)習(xí)機(jī)兩種電器充電,請(qǐng)用列表或畫樹狀圖的方法表示出兩個(gè)插頭插入插座的所有可能情況,并計(jì)算兩個(gè)插頭插在相鄰插座的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張面積為100cm2的正方形紙片,其正投影的面積可能是100cm2嗎?可能是80cm2嗎?可能是120cm2嗎?試確定這張正方形紙片的正投影面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB,F(xiàn)C.
(1)求證:四邊形ABFC是菱形;
(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,,射線,點(diǎn)從點(diǎn)出發(fā)沿射線以的速度運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿射線以的速度運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.
(1)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),_________,當(dāng)點(diǎn)在線段的延長(zhǎng)線上運(yùn)動(dòng)時(shí),_________(請(qǐng)用含的式子表示);
(2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形時(shí),求的值;
(3)求當(dāng)_________時(shí),,兩點(diǎn)間的距離最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△DEF關(guān)于點(diǎn)O成中心對(duì)稱.
(1)作出它們的對(duì)稱中心O,并簡(jiǎn)要說明作法;
(2)若AB=6,AC=5,BC=4,求△DEF的周長(zhǎng);
(3)連接AF,CD,試判斷四邊形ACDF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國(guó)早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量小雁塔的高度,由于觀測(cè)點(diǎn)與小雁塔底部間的距離不易測(cè)量,因此經(jīng)過研究需要進(jìn)行兩次測(cè)量,于是在陽光下,他們首先利用影長(zhǎng)進(jìn)行測(cè)量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測(cè)得此時(shí)木棒的影長(zhǎng)DE=2.4米;然后,小希在BD的延長(zhǎng)線上找出一點(diǎn)F,使得A、C、F三點(diǎn)在同一直線上,并測(cè)得DF=2.5米.已知圖中所有點(diǎn)均在同一平面內(nèi),木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測(cè)量數(shù)據(jù),求小雁塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店出售一種水果,經(jīng)過市場(chǎng)估算,若每個(gè)售價(jià)為20元時(shí),每周可賣出300個(gè).經(jīng)過市場(chǎng)調(diào)查,如果每個(gè)水果每降價(jià)1元,每周可多賣出25個(gè),若設(shè)每個(gè)水果的售價(jià)為x元(x<20).
(1)則這一周可賣出這種水果為________個(gè)(用含x的代數(shù)式表示);
(2)若該周銷售這種水果的收入為6400元,那么每個(gè)水果的售價(jià)應(yīng)為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com