【題目】(1)如圖1,正方形ABCD和正方形DEFG,GAD邊上,ECD的延長(zhǎng)線上.求證:AE=CG,AECG;

(2)如圖2,若將圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)角度θ(0°θ90°),此時(shí)AE=CG還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;

3)如圖3,當(dāng)正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)45°時(shí),延長(zhǎng)CGAE于點(diǎn)H,當(dāng)AD=4DG=時(shí),求線段CH的長(zhǎng).

【答案】1)(2)見解析;(3

【解析】試題分析:1)先判斷出ADE≌△CDG,然后用互余判斷出垂直;

2)先判斷出ADE≌△CDG,然后用互余判斷出垂直;

3)先判斷出ADE≌△CDG,然后用互余判斷出垂直,然后用勾股定理計(jì)算出CM,AM最后用相似即可.

試題解析:(1)在ADECDG中,

DE=DGADE=CDG,AD=CD

∴△ADE≌△CDG,

AE=CGAED=CGD,

∵∠DCG+CGD=90°

∴∠DCG+AED=90°,

AECG

2∵∠CDG+ADG=90°ADE+ADG=90°,

∴∠CDG=ADE

ADECDG中,

DE=DG,ADE=CDGAD=CD,

∴△ADE≌△CDG

AE=CG,AED=CGD

∵∠DCG+CGD=90°,

∴∠DCG+AED=90°,

AECG

3)如圖,

過點(diǎn)EAD的垂線,垂足為N,連接AC,

ADECDG中,

DE=DG,ADE=CDG,AD=CD,

∴△ADE≌△CDG,

∴∠EAD=DCM

tanDCM=,

DM=CD=

CM==AM=ADDM=

∵△CMD∽△AMH,

,

AH=,

CH==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)D、E分別在AB、AC上,且CEBC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得到CF,連接EF

1)求證:△BDC≌△EFC;

2)若EFCD,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為統(tǒng)籌安排大課間體育活動(dòng),在各班隨機(jī)選取了一部分學(xué)生,分成四類活動(dòng):“籃球”、“羽毛球”、“乒乓球”、“其他”進(jìn)行調(diào)查,整理收集到的數(shù)據(jù),繪制成如下的兩幅統(tǒng)計(jì)圖.

(1)學(xué)校采用的調(diào)查方式是   ;學(xué)校共選取了   名學(xué)生;

(2)補(bǔ)全統(tǒng)計(jì)圖中的數(shù)據(jù):條形統(tǒng)計(jì)圖中羽毛球   人、乒乓球   人、其他   人、扇形統(tǒng)計(jì)圖中其他   %;

(3)該校共有1200名學(xué)生,請(qǐng)估計(jì)喜歡“乒乓球”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣+bx+c與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(﹣4,0),B(1,0).

(1)求拋物線的解析式;

(2)已知點(diǎn)P在拋物線上,連接PC,PB,若PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);

(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,放在直角坐標(biāo)系中的正方形ABCD邊長(zhǎng)為4,現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正四面體骰子(它有四個(gè)頂點(diǎn),各頂點(diǎn)的點(diǎn)數(shù)分別是1至4這四個(gè)數(shù)字中一個(gè)),每個(gè)頂點(diǎn)朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點(diǎn)數(shù)作為直角坐標(biāo)中P點(diǎn)的坐標(biāo))第一次的點(diǎn)數(shù)作橫坐標(biāo),第二次的點(diǎn)數(shù)作縱坐標(biāo)).

(1)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率.

(2)將正方形ABCD平移整數(shù)個(gè)單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD

面上的概率為0.75;若存在,指出其中的一種平移方式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連結(jié)一四邊形各邊的中點(diǎn),若所得的四邊形是一個(gè)菱形,則原四邊形一定是( ).

A.矩形B.對(duì)角線相互垂直的四邊形

C.平行四邊形D.對(duì)角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲容器中裝有濃度為a的果汁,乙容器中裝有濃度為b的果汁,兩個(gè)容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,兩容器內(nèi)的果汁濃度相同,則m的值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】喜迎新中國(guó)70華誕,感受祖國(guó)70年滄桑巨變,70年壯麗輝煌,西大附中開展祖國(guó),我為你驕傲的歌唱比賽,為了籌集歌唱比賽的演出服裝資金,初二年級(jí)從批發(fā)市場(chǎng)購(gòu)進(jìn)、兩種材料用于手工制作,進(jìn)行愛心義賣.若每個(gè)種材料的進(jìn)價(jià)比每個(gè)種材料的進(jìn)價(jià)少2元,且用160元購(gòu)進(jìn)種材料的數(shù)量與用200元購(gòu)進(jìn)種材料的數(shù)量相等.

1)求、兩種材料的進(jìn)價(jià)分別為多少元?

2)同學(xué)們齊心協(xié)力、大膽創(chuàng)新制作出了新穎別致的甲、乙兩種手工藝品共56個(gè),乙的數(shù)量比甲的數(shù)量的兩倍還多,但多的個(gè)數(shù)不超過2個(gè),甲的售價(jià)是24/個(gè),乙的售價(jià)是30/個(gè),為了使利潤(rùn)不低于1040元,有幾種制作方案,哪種利潤(rùn)方案最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程組:

1(用代入法)

2(用加減法)

3

4

查看答案和解析>>

同步練習(xí)冊(cè)答案