【題目】順次連結一四邊形各邊的中點,若所得的四邊形是一個菱形,則原四邊形一定是( ).
A.矩形B.對角線相互垂直的四邊形
C.平行四邊形D.對角線相等的四邊形
科目:初中數(shù)學 來源: 題型:
【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?
(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點D,點E在上,連接DE,AE,連接CE并延長交AB于點F,∠AED=∠ACF.
(1)求證:CF⊥AB;
(2)若CD=4,CB=4,cos∠ACF=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,正方形ABCD和正方形DEFG,G在AD邊上,E在CD的延長線上.求證:AE=CG,AE⊥CG;
(2)如圖2,若將圖1中的正方形DEFG繞點D順時針旋轉角度θ(0°<θ<90°),此時AE=CG還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)如圖3,當正方形DEFG繞點D順時針旋轉45°時,延長CG交AE于點H,當AD=4,DG=時,求線段CH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個商場在同一周內經(jīng)營同一種商品,每天的獲利情況如下表:
日期 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期天 |
甲商場獲利/萬元 | 2.5 | 2.4 | 2.8 | 3 | 3.2 | 3.5 | 3.6 |
乙商場獲利/萬元 | 1.9 | 2.3 | 2.7 | 2.6 | 3 | 4 | 4.5 |
(1)請你計算出這兩個商場在這周內每天獲利的平均數(shù),并說明這兩個商場本周內總的獲利情況;
(2)在圖所示的網(wǎng)格圖內畫出兩個商場每天獲利的折線圖;(甲商場用虛線,乙商場用實線)
(3)根據(jù)折線圖,請你預測下周一哪個商場的獲利會多一些并簡單說出你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,
(1)問直線EF與AB有怎樣的位置關系?加以證明;
(2)若∠CEF=70°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)的圖象交于C、D兩點,DE⊥x軸于點E,已知C點的坐標是(6,﹣1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA=2,OB=3,現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移2個單位,分別得到點A,B的對應點C,D,連接AC,BD.
(1)求點C、D的坐標及四邊形ABDC的面積;
(2)若點Q在線的CD上移動(不包括C,D兩點).QO與線段AB,CD所成的角∠1與∠2如圖所示,給出下列兩個結論:①∠1+∠2的值不變;②的值不變,其中只有一個結論是正確的,請你找出這個結論,并求出這個值.
(3)在y軸正半軸上是否存在點P,使得S△CDP=S△PBO?如果有,試求出點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com