【題目】如圖,半徑為1cm的⊙O中,AB為⊙O內(nèi)接正九邊形的一邊,點C、D分別在優(yōu)弧與劣弧上.則下列結(jié)論:①S扇形AOB= πcm2;② ;③∠ACB=20°;④∠ADB=140°.錯誤的有( )

A.0個
B.1個
C.2個
D.3個

【答案】B
【解析】∵AB為⊙O內(nèi)接正九邊形的一邊,

∴∠AOB= =40°,

∴S扇形AOB= = π(cm2), 的長= = π(cm);∠ACB= ∠AOB=20°;

∴①②③正確;∠ADB=180°﹣20°=160°;

∴④錯誤;錯誤的有1個,

所以答案是:B.


【考點精析】掌握弧長計算公式和扇形面積計算公式是解答本題的根本,需要知道若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,D,E三點共線,C,B,F三點共線,AB=CD,AD=CB,DE=BF,那么BE與DF之間有什么數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形ABC的三條內(nèi)角平分線為AE、BF、CG,下面的說法中正確的個數(shù)有(

①△ABC的內(nèi)角平分線上的點到三邊距離相等

②三角形的三條內(nèi)角平分線交于一點

③三角形的內(nèi)角平分線位于三角形的內(nèi)部

④三角形的任一內(nèi)角平分線將三角形分成面積相等的兩部分.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC和△A'B'C'關(guān)于直線m對稱.

(1)結(jié)合圖形指出對稱點;

(2)若連接AA',直線m與線段AA'有什么關(guān)系?

(3)BC與B'C'的交點,AB與A'B'的交點分別與直線m有怎樣的關(guān)系?若延長AC與A'C',其交點與直線m有怎樣的關(guān)系?你發(fā)現(xiàn)了什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),,按此方式依次操作,則第6個正六邊形的邊長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑OA的長為2,點B是⊙O上的動點,以AB為半徑的⊙A與線段OB相交于點C,AC的延長線與⊙O相交于點D.設(shè)線段AB的長為x,線段OC的長為y.
(1)求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(2)當(dāng)四邊形ABDO是梯形時,求線段OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則sin∠ECB為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=3,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為1,

1)作△ABC關(guān)于軸的對稱圖形△ABC(不寫做法),并寫出ABC'的坐標(biāo),想一想:關(guān)于軸對稱的兩個點之間有什么關(guān)系?

2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案