6.如圖,Rt△ABC中,∠C=90°,AB=10,AC=8,Rt△ABC的斜邊在x軸的正半軸上,點(diǎn)A與原點(diǎn)重合.隨著頂點(diǎn)A由O點(diǎn)出發(fā)沿y軸的正半軸方向滑動(dòng),點(diǎn)B也沿著x軸向點(diǎn)O滑動(dòng),直到與點(diǎn)O重合時(shí)運(yùn)動(dòng)結(jié)束.在這個(gè)運(yùn)動(dòng)過程中.
(1)AB中點(diǎn)P經(jīng)過的路徑長(zhǎng)$\frac{5}{2}$π.
(2)點(diǎn)C運(yùn)動(dòng)的路徑長(zhǎng)是6.

分析 (1)根據(jù)直角三角形斜邊中線等于斜邊一半,確定中點(diǎn)P的運(yùn)動(dòng)路徑:以O(shè)為圓心,以O(shè)P為半徑的$\frac{1}{4}$圓弧,半徑OP=$\frac{1}{2}$AB=5,代入周長(zhǎng)公式計(jì)算即可;
(2)分為兩種情況:
①當(dāng)A從O到現(xiàn)在的點(diǎn)A處時(shí),如圖2,此時(shí)C′A⊥y軸,點(diǎn)C運(yùn)動(dòng)的路徑長(zhǎng)是CC′的長(zhǎng);
②當(dāng)A再繼續(xù)向上移動(dòng),直到點(diǎn)B與O重合時(shí),如圖3,此時(shí)點(diǎn)C運(yùn)動(dòng)的路徑是從C′到C,長(zhǎng)是CC′;
分別計(jì)算并相加.

解答 解:(1)如圖1,∵∠AOB=90°,P為AB的中點(diǎn),
∴OP=$\frac{1}{2}$AB,
∵AB=10,
∴OP=5,
∴AB中點(diǎn)P運(yùn)動(dòng)的軌跡是以O(shè)為圓心,以O(shè)P為半徑的$\frac{1}{4}$圓弧,
即AB中點(diǎn)P經(jīng)過的路徑長(zhǎng)=$\frac{1}{4}$×2×5π=$\frac{5}{2}$π;
(2)①當(dāng)A從O到現(xiàn)在的點(diǎn)A處時(shí),如圖2,此時(shí)C′A⊥y軸,
點(diǎn)C運(yùn)動(dòng)的路徑長(zhǎng)是CC′的長(zhǎng),
∴AC′=OC=8,
∵AC′∥OB,
∴∠AC′O=∠COB,
∴cos∠AC′O=cos∠COB=$\frac{OC}{OB}=\frac{AC′}{OC′}$,
∴$\frac{8}{10}=\frac{8}{OC′}$,
∴OC′=10,
∴CC′=10-8=2;
②當(dāng)A再繼續(xù)向上移動(dòng),直到點(diǎn)B與O重合時(shí),如圖3,
此時(shí)點(diǎn)C運(yùn)動(dòng)的路徑是從C′到C,長(zhǎng)是CC′,
CC′=OC′-BC=10-6=4,
綜上所述,點(diǎn)C運(yùn)動(dòng)的路徑長(zhǎng)是:4+2=6;
故答案為:(1)$\frac{5}{2}π$;  (2)6.

點(diǎn)評(píng) 本題考查軌跡問題、直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用特殊位置解決問題,有難度,并利用了數(shù)形結(jié)合的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是2002年8月在北京召開的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),它取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個(gè)全等的直角三角形和一個(gè)小正方形的拼成的大正方形,如果大正方形的面積是5,小正方形的面積是1,直角三角形的較短邊為a,較長(zhǎng)邊為b,那么(a+b)2的值是( 。
A.4B.9C.16D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四邊形ABCD中,AB=x-5,CD=11-x,AD=5,BC=x-3,對(duì)角線AC=4,AC⊥AB,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.已知等腰三角形的兩邊長(zhǎng)為4,5,則它的周長(zhǎng)為( 。
A.13B.14C.15D.13或14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中是真命題的是(  )
A.等腰三角形的對(duì)稱軸是頂角平分線
B.等邊對(duì)等角
C.三線合一是指等腰三角形的中線、高線、角平分線重合
D.等腰三角形有1條或3條對(duì)稱軸

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.下列計(jì)算結(jié)果錯(cuò)誤的是( 。
A.(3ab)3=27a3b3B.2m6÷(8m3)=0.25m3C.0.254×28=1D.(2m•2nρ=2mnρ

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.x取任意實(shí)數(shù),多項(xiàng)式2x-x2-2的值必定是(  )
A.正實(shí)數(shù)B.負(fù)實(shí)數(shù)C.非正實(shí)數(shù)D.非負(fù)實(shí)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.AB為⊙O的弦,點(diǎn)C在⊙O上,CD⊥AB于點(diǎn)D,點(diǎn)E為弧AB的中點(diǎn),連接CE,OC.
(1)求證:CE平分∠OCD;
(2)連接AC,點(diǎn)E關(guān)于直線AC的對(duì)稱點(diǎn)為點(diǎn)M,連接EM,分別交⊙O、AC于點(diǎn)H、K,連接CM交⊙O于點(diǎn)N,延長(zhǎng)CD交⊙O于點(diǎn)G,連接EG、AM.求證:AH=EG;
(3)在(2)的條件下,取CE中點(diǎn)L,連接OL、HN,BC,OL=$\frac{\sqrt{5}}{2}$,BC=15,CK=16,求線段HN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.如圖,已知拋物線y=-x2+px+q的對(duì)稱軸為x=-3,過其頂點(diǎn)M的一條直線y=kx+b與該拋物線的另一個(gè)交點(diǎn)為N(-1,1).要在坐標(biāo)軸上找一點(diǎn)P,使得△PMN的周長(zhǎng)最小,則點(diǎn)P的坐標(biāo)為(0,2).

查看答案和解析>>

同步練習(xí)冊(cè)答案