【題目】等腰BCD中,∠DCB120°,點(diǎn)E滿足∠DEC60°

1)如圖1,點(diǎn)E在邊BD上時(shí),求證:ED2BE;

2)如圖2,過點(diǎn)BDE的垂線交DE的延長(zhǎng)線于點(diǎn)F,試探究DEEF的數(shù)量關(guān)系,并證明;

3)若∠DEB150°,直接寫出BE,DEEC的關(guān)系.

【答案】1)見解析;(2DE2EF.理由見解析;(3BE2EDEC.理由見解析.

【解析】

1)先根據(jù)等腰三角形性質(zhì)和三角形外角的性質(zhì)得:BC=CDBE=CE,根據(jù)三角形的內(nèi)角和定理證明∠DCE=180°-30°-60°=90°,由直角三角形30度角的性質(zhì)可得結(jié)論.

2)結(jié)論:DE=2EF.如圖2中,作DHECEC的延長(zhǎng)線于H,連接FH.想辦法證明DE=2EH,EF=EH即可解決問題.

3)結(jié)論:BE2=EDEC.證明△DEB∽△BEC可得結(jié)論.

1)證明:如圖1中,

∵等腰△BCD中,∠DCB120°,

BCCD,

∴∠B=∠D30°,

∵∠DEC60°=∠B+ECB

∴∠ECB30°,

BECE

DEC中,∠DCE180°30°60°90°,

∵∠D30°,

ED2EC,

ED2BE;

2)解:結(jié)論:DE2EF

理由:如圖2中,作DHECEC的延長(zhǎng)線于H,連接FH

∵∠DHE90°,∠DEH60°,

∴∠EDH30°,

CDCB,∠BCD120°

∴∠CBD=∠BDC30°,

∴∠BDC=∠EDH,

∴∠BDF=∠CDH

BFDF,

∴∠BFD=∠H90°,

∴△DFB∽△DHC

,

,

∵∠BDC=∠FDH

∴△BDC∽△FDH,

∴∠DBC=∠DFH30°,

∵∠DEH=∠EFH+EHF60°,

∴∠EFH=∠EHF30°,

EFEH

RtDEH中,∵∠EDH30°

DE2EFH,

DE2EF

3)解:結(jié)論:BE2EDEC

理由:如圖3中,

∵∠BED150°,∠DEC60°,

∴∠BEC360°BED﹣∠DEC360°150°60°150°,

∴∠BED=∠BEC

∴∠EBD+EDB30°,

∵∠EBD+EBC30°,

∴∠BDE=∠EBC,

∴△DEB∽△BEC

,

BE2DEEC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時(shí)停止.甲車行駛一段時(shí)間后,因故停車0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.

1)求甲、乙兩車行駛的速度V、V.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長(zhǎng)時(shí)間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點(diǎn)B,

點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若ADE

的面積為3,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)是線段上的動(dòng)點(diǎn),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連接.若已知,設(shè)兩點(diǎn)間的距離為兩點(diǎn)間的距離為兩點(diǎn)間的距離為.(若同學(xué)們打印的BC的長(zhǎng)度如不是,請(qǐng)同學(xué)們重新畫圖、測(cè)量)

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小明的探究過程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了的幾組對(duì)應(yīng)值,如下表:

0

1

2

3

4

5

6

7

8

7.03

6.20

5.44

4.76

4.21

3.85

3.73

3.87

4.26

5.66

4.32

1.97

1.59

2.27

3.43

4.73

寫出的值.(保留1位小數(shù)

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖像,解決問題:

①當(dāng)在線段上時(shí),的長(zhǎng)度約為________

②當(dāng)為等腰三角形時(shí),的長(zhǎng)度約為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).ABC的頂點(diǎn)在格點(diǎn)上,A1,0)、C07).

1)在方格紙中畫出平面直角坐標(biāo)系,寫出B點(diǎn)的坐標(biāo):B  ;

2)直接寫出ABC的形狀:  ,直接寫出ABC的面積  ;

3)若D(﹣1,4),連接BDACE,則 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn)(1,0),且對(duì)稱軸為直線,其部分圖象如圖所示.對(duì)于此拋物線有如下四個(gè)結(jié)論:①0; ;③9a-3b+c=0;④若,則時(shí)的函數(shù)值小于時(shí)的函數(shù)值.其中正確結(jié)論的序號(hào)是(

A.①③B.②④C.②③D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線 軸交于點(diǎn)A,將點(diǎn)A向左平移3個(gè)單位長(zhǎng)度,得到點(diǎn)B,點(diǎn)B在拋物線上.

1)求點(diǎn)B的坐標(biāo)(用含m的式子表示);

2)求拋物線的對(duì)稱軸;

3)已知點(diǎn)P(-1,-m)Q(-3,1).若拋物線與線段PQ恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七巧板是我國(guó)古老的益智玩具,受到全世界人的追捧.下圖是由一副“現(xiàn)代智力七巧板經(jīng)無縫拼接且沒有重疊的軸對(duì)稱花朵型圖案,直線AB為對(duì)稱軸,其中①②③是直徑為1的圓與半圓,為直角梯形,為等腰直角三角形,⑥⑦是有一組對(duì)邊平行且銳角皆為45°的拼板.若已知的周長(zhǎng)是AB3倍,的周長(zhǎng)是AB5倍,則圖中線段AC的長(zhǎng)度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°AC=20cm,BC=15cm,現(xiàn)有動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC向點(diǎn)C方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB向點(diǎn)B方向運(yùn)動(dòng),如果點(diǎn)P的速度是4cm/秒,點(diǎn)Q的速度是2cm/秒,它們同時(shí)出發(fā),當(dāng)有一點(diǎn)到達(dá)所在線段的端點(diǎn)時(shí),就停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.求:

1)當(dāng)t=3秒時(shí),這時(shí),P,Q兩點(diǎn)之間的距離是多少?

2)若△CPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.

3)當(dāng)t為多少秒時(shí),以點(diǎn)C,P,Q為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

同步練習(xí)冊(cè)答案