【題目】如圖,在平面直角坐標系中,點O是坐標原點,點B(0,12),點A在第一象限內(nèi),AOB為等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,點D從點B出發(fā),以每秒2個單位的速度沿y軸向終點O運動,連接DA,過點A作AEAD,射線AE交x軸于點E,連接BE,交線段AC于點F,交線段OA于點G.

(1)請直接寫出A的坐標;

(2)點D運動的時間為t秒時,用含t的代數(shù)式表示ACD的面積S,并寫出t的取值范圍;

(3)在(2)的條件下,當四邊形DAEO的面積等于6S時,求AGF的面積.

 

【答案】(1)A(6,6);(2)當點D在線段BC上時(不包括點C),即:0≤t<3,S= 18﹣6t,當點D在線段BC上時(不包括點C),即:3<t≤6,∴S= 6t﹣18;(3)①當點D在線段BC上時(不包括點C),即:0≤t<3,SAFG=6;②當點D在線段OC上(不包括點C),即:3<t≤6,SAFG=

【解析】

(1)先確定出OB=12,再用等腰直角三角形的性質(zhì)得AC=BC=OC=OB=6,即可得出結論;

(2)當點D在線段BC上時(不包括點C),即:0≤t<3,得出CD=BC-BD=6-2t,利用三角形面積公式即可;

當點D在線段BC上時(不包括點C),即:3<t≤6,如圖2,CD=BD-BC=2t-6,最后利用三角形面積公式即可;

(3)①當點D在線段BC上時(不包括點C),即:0≤t<3,如圖1,先判斷出SACD=SAME,進而S四邊形DOEA=S正方形ACOM=AC2=36,即可求出S,進而t=2,CD=EM=2,OE=4,再求出AF=AC-CF=4=OE,最后判斷出AFG≌△OEG,求出PG=QG=6即可得出結論;

②當點D在線段OC上(不包括點C),即:3<t≤6,如圖2,同①的方法知,S=6,t=4,CD=EM=2,OE=8,同①的方法得,OF=4,即AF=AC-OF=2,再判斷出AFG∽△OEG,得出h'=4h,即可得出h=即可得出結論.

(1)B(0,12),

OB=12,

∵△AOB為等腰三角形,∠BAO=90°,AB=AO,ACOB,

AC=BC=OC=OB=6,

A(6,6);

(2)當點D在線段BC上時(不包括點C),即:0≤t<3,如圖1,

由運動知,BD=2t,

CD=BC﹣BD=6﹣2t,

S=SACD=CD×AC=18﹣6t,

當點D在線段BC上時(不包括點C),即:3<t≤6,如圖2,

由運動知,BD=2t,

CD=BD﹣BC=2t﹣6,

S=SACD=CD×AC=6t﹣18;

(3)①當點D在線段BC上時(不包括點C),即:0≤t<3,如圖1,

過點AAMx軸于M,

∴四邊形OCAM是矩形,

A(6,6),

AC=AM,

∴矩形OCAM是正方形,

OM=AC=6,CAM=90°,

∵∠DAE=90°,

∴∠CAD=EAM,

ACDAME中,

,

∴△ACD≌△AME,

SACD=SAME,

S四邊形DOEA=SACD+S四邊形COEA=SAMF+S四邊形COEA=S正方形ACOM=AC2=36,

∵四邊形DAEO的面積等于6S,

6S=36,

S=6,

由(2)知,S=18﹣6t,

18﹣6t=6,

t=2,

CD=EM=6﹣2t=2,

OM=6,

OE=OM﹣EM=4,

ACOM,OC=BC,

CF=OE=2,

AF=AC﹣CF=4=OE,

過點GGQOMQ,交ACP,

PGAC,

∴四邊形OCPQ是矩形,

PQ=OC=6,

易知,AFG≌△OEG,

PG=QG=6,

SAFG=AF×PG=6;

②當點D在線段OC上(不包括點C),即:3<t≤6,如圖2,

同①的方法知,S=6,

S=6t﹣18,

6t﹣18=6,

t=4,

CD=EM=2,

OE=8,

同①的方法得,OF=4,

AF=AC﹣OF=2,

ACOM,

∴△AFG∽△OEG,

AFG的邊AF上的高為h,OEG的邊OE上的高為h',

h'=4h,

h+h'=6,

h=,

SAFG=AF×h=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在RtABC中,ACB=90°,M是邊AB的中點,連接CM并延長到點E,使得EM=AB,D是邊AC上一點,且AD=BC,聯(lián)結DE,求CDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AE切⊙O于點E,AT交⊙O于點M,N,線段OE交AT于點C,OB⊥AT于點B,已知∠EAT=30°,AE=3 ,MN=2

(1)求∠COB的度數(shù);
(2)求⊙O的半徑R;
(3)點F在⊙O上( 是劣弧),且EF=5,把△OBC經(jīng)過平移、旋轉和相似變換后,使它的兩個頂點分別與點E,F(xiàn)重合.在EF的同一側,這樣的三角形共有多少個?你能在其中找出另一個頂點在⊙O上的三角形嗎?請在圖中畫出這個三角形,并求出這個三角形與△OBC的周長之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個正方體的表面展開圖,請回答下列問題:

(1)與面B、C相對的面分別是   ;

(2)若Aa3+a2b+3,Ba2b﹣3,Ca3﹣1,D=﹣(a2b﹣6),且相對兩個面所表示的代數(shù)式的和都相等,求E、F分別代表的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知∠ABC=90°,△ABC是等腰三角形,點D為斜邊AC的中點,連接DB,過點A作BAC的平分線,分別與DB,BC相交于點E,F(xiàn).

(1)求證:BE=BF;

(2)如圖2,連接CE,在不添加任何輔助線的條件下,直接寫出圖中所有的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過A(2,0)、C(0,12)兩點,且對稱軸為直線x=4.設頂點為點P,與x軸的另一交點為點B.

(1)求二次函數(shù)的解析式及頂點P的坐標;
(2)如圖1,在直線 y=2x上是否存在點D,使四邊形OPBD為等腰梯形?若存在,求出點D的坐標;若不存在,請說明理由;
(3)如圖2,點M是線段OP上的一個動點(O、P兩點除外),以每秒 個單位長度的速度由點P向點O 運動,過點M作直線MN∥x軸,交PB于點N.將△PMN沿直線MN對折,得到△P1MN.在動點M的運動過程中,設△P1MN與梯形OMNB的重疊部分的面積為S,運動時間為t秒.求S關于t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABD△BCD都是等邊三角形紙片,AB=2,將△ABD紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD

(1)求證:△FBE是直角三角形;

(2)求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=4,AC=6,ABC和ACB的平分線交于點E,過點E作MNBC分別交AB、AC于M、N,則AMN的周長為( 。

A. 10 B. 6 C. 4 D. 不確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA= .特別地,當點D、E重合時,規(guī)定:λA=0.另外,對λB、λC作類似的規(guī)定.

(1)如圖2,在△ABC中,∠C=90°,∠A=30°,求λA、λC;
(2)在每個小正方形邊長均為1的4×4的方格紙上,畫一個△ABC,使其頂點在格點(格點即每個小正方形的頂點)上,且λA=2,面積也為2;
(3)判斷下列三個命題的真假(真命題打“√”,假命題打“×”):
①若△ABC中λA<1,則△ABC為銳角三角形;
②若△ABC中λA=1,則△ABC為直角三角形;
③若△ABC中λA>1,則△ABC為鈍角三角形.

查看答案和解析>>

同步練習冊答案