【題目】如圖1,在□ABCD中,AB=6,∠B= (60°<≤90°). 點(diǎn)E在BC上,連接AE,把△ABE沿AE折疊,使點(diǎn)B與AD上的點(diǎn)F重合,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)如圖2,點(diǎn)M是BC上的動點(diǎn),連接AM,把線段AM繞點(diǎn)M順時針旋轉(zhuǎn)得到線段MN,連接FN,求FN的最小值(用含的代數(shù)式表示).
【答案】(1)詳見解析;(2)FE·sin( -90°)
【解析】
(1)由四邊形ABCD是平行四邊形得AF∥BE,所以∠FAE=∠BEA,由折疊的性質(zhì)得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四邊形ABEF是平行四邊形,又BE=EF,因此可得結(jié)論;
(2)根據(jù)點(diǎn)M在線段BE上和EC上兩種情況證明∠ENG=90°- ,利用菱形的性質(zhì)得到∠FEN= -90°,再根據(jù)垂線段最短,求出FN的最小值即可.
(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠FAE=∠BEA,
由折疊的性質(zhì)得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,
∴∠BAE=∠FEA,
∴AB∥FE,
∴四邊形ABEF是平行四邊形,
又BE=EF,
∴四邊形ABEF是菱形;
(2)①如圖1,當(dāng)點(diǎn)M在線段BE上時,在射線MC上取點(diǎn)G,使MG=AB,連接GN、EN.
∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B
∴∠1=∠2
又AM=NM,AB=MG
∴△ABM≌△MGN
∴∠B=∠3,NG=BM
∵MG=AB=BE
∴EG=AB=NG
∴∠4=∠ENG= (180°-)=90°-
又在菱形ABEF中,AB∥EF
∴∠FEC=∠B=
∴∠FEN=∠FEC-∠4=- (90°- )= -90°
②如圖2,當(dāng)點(diǎn)M在線段EC上時,在BC延長線上截取MG=AB,連接GN、EN.
同理可得:∠FEN=∠FEC-∠4=- (90°- )= -90°
綜上所述,∠FEN= -90°
∴當(dāng)點(diǎn)M在BC上運(yùn)動時,點(diǎn)N在射線EH上運(yùn)動(如圖3)
當(dāng)FN⊥EH時,FN最小,其最小值為FE·sin( -90°)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E是AD邊上的中點(diǎn),連接BE,并延長BE交CD的延長線于點(diǎn)F.
(1)證明:FD=AB;(2)當(dāng)平行四邊形ABCD的面積為8時,求△FED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為( )
A. 6π﹣B. 6π﹣9C. 12π﹣D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E是BC的中點(diǎn),AE交BD于點(diǎn)F,BH⊥AE于點(diǎn)G,連接OG,則下列結(jié)論中①OF=OH,②△AOF∽△BGF,③tan∠GOH=2,④FG+CH=GO,正確的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展以“學(xué)習(xí)朱子文化,弘揚(yáng)理學(xué)思想”為主題的讀書月活動,并向?qū)W生征集讀后感,學(xué)校將收到的讀后感篇數(shù)按年級進(jìn)行統(tǒng)計,繪制了以下兩幅統(tǒng)計圖(不完整).
據(jù)圖中提供的信息完成以下問題
(1)扇形統(tǒng)計圖中“八年級”對應(yīng)的圓心角是 °,并補(bǔ)全條形統(tǒng)計圖;
(2)經(jīng)過評審,全校有4篇讀后感榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎讀后感中任選兩篇在校廣播電臺上播出,請利用畫樹狀圖或列表的方法求出七年級特等獎讀后感被校廣播電臺播出的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.某商場為緩解“停車難”問題,擬建造地下停車庫,如圖是該地下停車庫坡道入口的設(shè)計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5 m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)?/span>.小明認(rèn)為CD的長就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長作為限制的高度.小明和小亮誰說得對?請你判斷并計算出正確的結(jié)果.(結(jié)果精確到0.1 m,參考數(shù)據(jù):sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系;線段CD表示每千克的銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義.
(2)求線段AB所表示的y1與x之間的函數(shù)表達(dá)式.
(3)當(dāng)0≤x≤90時,銷售該產(chǎn)品獲得的利潤與產(chǎn)量的關(guān)系式是 ;當(dāng)90≤x≤130時,銷售該產(chǎn)品獲得的利潤與產(chǎn)量的關(guān)系式是 ;總之,當(dāng)產(chǎn)量為 kg時,獲得的利潤最大,最大利潤是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com