分析 (1)由折疊即可得到DG=GH=CH,設HC=x,則有DG=GH=x,DH=$\sqrt{2}$x,根據(jù)DC=DH+CH=1,就可求出GH;
(2)利用閱讀中證明“四邊形BCEF為$\sqrt{2}$矩形”的方法就可解決問題;
(3)同(2)中的證明可得:將$\sqrt{3}$矩形沿用(2)中的方式操作1次后,得到一個“$\sqrt{4}$矩形”,將$\sqrt{4}$矩形沿用(2)中的方式操作1次后,得到一個“$\sqrt{5}$矩形”,將$\sqrt{5}$矩形沿用(2)中的方式操作1次后,得到一個“$\sqrt{6}$矩形”,…由此規(guī)律就可得到n的值.
解答 解:(1)如圖,
由折疊可得:
DG=HG,GH=CH,
∴DG=GH=CH.
設HC=x,則DG=GH=x.
∵∠DGH=90°,
∴DH=$\sqrt{2}$x,
∴DC=DH+CH=$\sqrt{2}$x+x=1,
解得x=$\sqrt{2}$-1.
∴$\sqrt{2}$-1.
(2)證明:∵BC=1,EC=BF=$\frac{\sqrt{2}}{2}$,
∴BE=$\sqrt{E{C}^{2}+B{C}^{2}}$=$\frac{\sqrt{6}}{2}$.
由折疊可得BP=BC=1,∠FNM=∠BNM=90°,∠EMN=∠CMN=90°.
∵四邊形BCEF是矩形,
∴∠F=∠FEC=∠C=∠FBC=90°,
∴四邊形BCMN是矩形,∠BNM=∠F=90°,
∴MN∥EF,
∴$\frac{BP}{BE}$=$\frac{BN}{BF}$,即BP•BF=BE•BN,
∴1×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}}{2}$BN,
∴BN=$\frac{1}{\sqrt{3}}$,
∴BC:BN=1:$\frac{1}{\sqrt{3}}$=$\sqrt{3}$:1,
∴四邊形BCMN是$\sqrt{3}$的矩形;
(3)解:同理可得:
將矩形沿用(2)中的方式操作1次后,得到一個“$\sqrt{4}$矩形”,
將$\sqrt{4}$矩形沿用(2)中的方式操作1次后,得到一個“$\sqrt{5}$矩形”,
將$\sqrt{5}$矩形沿用(2)中的方式操作1次后,得到一個“$\sqrt{6}$矩形”,
…
所以將圖②中的$\sqrt{3}$矩形BCMN沿用(2)中的方式操作5次后,得到一個“$\sqrt{9}$矩形”,
則n=9.
點評 本題主要考查了幾何變換綜合題,掌握軸對稱的性質、正方形的性質、矩形的判定與性質、平行線分線段成比例、勾股定理等知識是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 52° | B. | 104° | C. | 120° | D. | 128° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com