【題目】如圖,正方形ABCD與正三角形AEF的頂點A重合,將△AEF繞頂點A旋轉,在旋轉過程中,當BE=DF時,∠BAE的大小可以是

【答案】15°或165°
【解析】解:①當正三角形AEF在正方形ABCD的內(nèi)部時,如圖1,
∵正方形ABCD與正三角形AEF的頂點A重合,
當BE=DF時,
,
∴△ABE≌△ADF(SSS),
∴∠BAE=∠FAD,
∵∠EAF=60°,
∴∠BAE+∠FAD=30°,
∴∠BAE=∠FAD=15°,
②當正三角形AEF在正方形ABCD的外部時.
∵正方形ABCD與正三角形AEF的頂點A重合,
當BE=DF時,
∴AB=AD BE=DF AE=AF,
∴△ABE≌△ADF(SSS),
∴∠BAE=∠FAD,
∵∠EAF=60°,
∴∠BAE=(360°﹣90°﹣60°)× +60°=165°,
∴∠BAE=∠FAD=165°
所以答案是:15°或165°.


【考點精析】根據(jù)題目的已知條件,利用正方形的性質和旋轉的性質的相關知識可以得到問題的答案,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC=90°,AB=DB,EB=CB,M,N分別是AE,CD的中點.

(1)求證:△ABM≌△DBN;

(2)試探索BM和BN的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點C在x軸的負半軸上,將ABCO繞點A逆時針旋轉得到ADEF,AD經(jīng)過點O,點F恰好落在x軸的正半軸上,若點D在反比例函數(shù)y= (x<0)的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個y關于x的函數(shù)同時滿足兩個條件:①圖象過(2,1)點;②當x>0時,y隨x的增大而減。@個函數(shù)解析式為 . (寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1.請同學們利用網(wǎng)格線進行畫圖:

(1)在圖1中,畫一個頂點為格點、面積為5的正方形;

(2)在圖2中,已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形;(要求畫出所有符合題意的線段)

(3)在圖3中,找一格點D,滿足:CB、CA的距離相等;到點A、C的距離相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,

(1)①畫出△ABC關于x軸對稱的△A1B1C1
②畫出△ABC繞原點O旋轉180°后的△A2B2C2 , 并寫出A2、B2、C2的坐標
(2)假設每個正方形網(wǎng)格的邊長為1,求△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把ABC紙片沿DE折疊,當點A落在四邊形BCDE內(nèi)部時,∠A與∠1、2之間的數(shù)量關系為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,A、CF、D在同一直線上,AFDC,ABDE,ABDE.

求證:(1) △ABC≌△DEF;

(2)BCEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,連接AC,BC,點D是BA延長線上一點,且AC=AD,若∠B=30°,AB=2,則CD的長是( )

A.
B.2
C.1
D.

查看答案和解析>>

同步練習冊答案