【題目】已知:如圖,AB為的直徑,點C是半圓上一點,CE⊥AB于E,BF∥OC,連接BC,CF.
(1)求證:∠OCF=∠ECB;
(2)當AB=10,BC=,求CF的值.
【答案】(1)證明見詳解.
(2)
【解析】
(1)延長CE交⊙O于點G,利用圓周角的性質(zhì)進行解答即可.
(2)連接AC,FO,利用△AOC和△FOC均是等腰三角形并且全等,得到CF=AC,在根據(jù)AB為直徑,△ABC為直角三角形,利用勾股定理求出AC即可得到CF的長.
證明:(1)延長CE交⊙O于點G.
∵AB為⊙O的直徑,CE⊥AB于E,
∴BC=BG,
∴∠G=∠2,
∵BF∥OC,
∴∠1=∠F,
又∵∠G=∠F,
∴∠1=∠2.
即∠OCF=∠ECB.
(2)連接AC,FO
∴OA=OC=OF,∠A=∠CFB,
由(1)可知∠1=∠CFB,并△AOC和△FOC均是等腰三角形
∴∠1=∠OFC=∠A=∠ACO
在△AOC和△FOC中
OC是公共邊,∠1= =∠ACO,∠OFC=∠A
∴△AOC△FOC
∴CF=AC
∵AB為直徑
∴
∴
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,E是BC的中點,連接AE,P是邊AD上一動點,沿過點P的直線將矩形折疊,使點D落在AE上的點D′處,當△APD′是直角三角形時,PD=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,關于x的二次函數(shù)y=ax2﹣2ax(a>0)的頂點為C,與x軸交于點O、A,關于x的一次函數(shù)y=﹣ax(a>0).
(1)試說明點C在一次函數(shù)的圖象上;
(2)若兩個點(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;
(3)若點E是二次函數(shù)圖象上一動點,E點的橫坐標是n,且﹣1≤n≤1,過點E作y軸的平行線,與一次函數(shù)圖象交于點F,當0<a≤2時,求線段EF的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BC是⊙O的直徑,點A在⊙上,AD⊥BC,垂足為D,,BE分別交AD、AC與點F、G.
(1)證明:FA=FB.
(2)BD=DO=2,求弧EC的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC、BC邊上,設CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為推進垃圾分類,推動綠色發(fā)展,某工廠購進甲、乙兩種型號的機器人用來進行垃圾分類,甲型機器人比乙型機器人每小時多分20kg,甲型機器人分類800kg垃圾所用的時間與乙型機器人分類600kg垃圾所用的時間相等。
(1)兩種機器人每小時分別分類多少垃圾?
(2)現(xiàn)在兩種機器人共同分類700kg垃圾,工作2小時后甲型機器人因機器維修退出,求甲型機器人退出后乙型機器人還需工作多長時間才能完成?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把矩形ABCD沿EF,GH折疊,使點B,C落在AD上同一點P處,∠FPG=90°,△A′EP的面積是8,△D′PH的面積是4,則矩形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對某校學生寒假閱讀時間情況調(diào)查,抽樣統(tǒng)計繪制了兩幅不完整的統(tǒng)計圖,請結(jié)合信息解決下列問題:
閱讀時間(小時) | (A) | (B) | (C) | (D) |
人數(shù) | 60 | 80 |
(1)這次統(tǒng)計A類 人;D類 人;
(2)如果該校有1200學生,那么D類學生數(shù)量約為多少人?
(3)甲、乙、丙、丁4名學生是閱讀屬于D類學生,他們分別來自九年級1人,八年級1人,七年級2人,現(xiàn)抽取2人電話回訪,則抽取到2人同為七年級學生的概率為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩張完全重合的矩形紙片,將其中一張繞點A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD,MF,若BD=4cm,∠ADB=30°.
(1)試探究線段BD與線段MF的數(shù)量關系和位置關系,并說明理由;
(2)把△BCD與△MEF剪去,將△ABD繞點A順時針旋轉(zhuǎn)得△AB1D1,邊AD1交FM于點K(如圖2),設旋轉(zhuǎn)角為β(0°<β<90°),當△AFK為等腰三角形時,求β的度數(shù).
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com