【題目】如圖,⊙O是△ABC的內切圓,切點分別為D、E、F,∠A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=______.
【答案】50°或130°
【解析】
有兩種情況:①當P在弧EDF上時,連接OE、OF,求出∠EOF,根據圓周角定理求出即可;②當P在弧EMF上時,∠EPF=∠EMF,根據圓內接四邊形的性質得到∠EMF+∠ENF=180°,代入求出即可.
有兩種情況:
①當P在弧EDF上時,∠EPF=∠ENF,連接OE、OF,
∵圓O是△ABC的內切圓,∴OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,
∵∠A=80°,∴∠EOF=360°∠AEO∠AFO∠A=100°,∴∠ENF=∠EPF=∠EOF=50°,
②當P在弧EMF上時,∠EPF=∠EMF,∠FPE=∠FME=180°50°=130°.
故答案為:50°或130°.
科目:初中數學 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市2017年國內生產總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關系是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學校組織的“最美數學小報”的評比中,校團委給每個同學的作品打分,成績分為四個等級,其中相應等級的得分依次記為100分,90分,80分,70分,將八(1)班與八(2)班的成績整理并繪制成如下統(tǒng)計圖:
請你根據以上提供的信息解答下列問題:
(1)將表格補充完整.
平均數(分) | 中位數(分) | 眾數(分) | |
八(1)班 | 83.75 | 80 | |
八(2)班 | 80 |
(2)若八(1)班有40人,且評分為B級及以上的同學有紀念獎章,請問該班共有幾位同學得到獎章?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司招聘一名員工,現有甲、乙兩人競聘,公司聘請了3位專家和4位群眾代表組成評審組,評審組對兩人竟聘演講進行現場打分,記分采用100分制,其得分如下表:
評委(序號) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
甲(得分) | 89 | 94 | 93 | 87 | 95 | 92 | 87 |
乙(得分) | 87 | 89 | 91 | 95 | 94 | 96 | 89 |
(1)甲、乙兩位競聘者得分的中位數分別是多少
(2)計算甲、乙兩位應聘者平均得分,從平均得分看應該錄用誰(結果保留一位小數)
(3)現知道1、2、3號評委為專家評委,4、5、6、7號評委為群眾評委,如果對專家評委組與群眾評委組的平均分數分別賦子適當的權,那么對專家評委組賦的權至少為多少時,甲的平均得分比乙的平均得分多0.5分及以上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E為AD上一點,FG⊥CE分別交AB、CD于F、G,垂足為O.
(1)求證:CE=FG;
(2)如圖2,連接OB,若AD=3DE,∠OBC=2∠DCE。
求的值;
若AD=3,則OE的長為_________(直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,過A、C、D三點的⊙O交AB于點E,連接DE、CE,∠CDE=∠BCE.
(1)求證:AD=CE;
(2)判斷直線BC與⊙O的位置關系,并說明理由;
(3)若BC=4,DE=10,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC分別交AC、AB的延長線于點E、F.
(1)求證:EF是⊙O的切線;
(2)若AC=4,CE=2,求的長度.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:小明在學習二次根式后,發(fā)現一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2.善于思考的小明進行了以下探索:設a+b=(m+n)2(其中a,b,m,n均為整數),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.請你仿照小明的方法解決下列問題:
(1)當a,b,m,n均為正整數時,若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a=______________,b=________;
(2)利用所探索的結論,找一組正整數a,b,m,n填空:
________+________=(________+________)2;
(3)若a+4=(m+n)2,且a,m,n均為正整數,求a的值.
(4)試化簡.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com