【題目】已知在四邊形中,∠A=∠C=90°.
(1)如圖1,若BE平分∠ABC,DF平分∠ADC的鄰補(bǔ)角,請(qǐng)寫出BE與DF的位置關(guān)系,并證明.
(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補(bǔ)角,判斷DE與BF位置關(guān)系并證明.
(3)如圖3,若BE、DE分別五等分∠ABC、∠ADC的鄰補(bǔ)角(即∠CDE=,∠CBE=),則∠E= .
【答案】(1)見解析;(2)見解析;(3)54°
【解析】分析:(1)延長(zhǎng)BE、FD交于G.由四邊形ABCD內(nèi)角和為360°及鄰補(bǔ)角定義,可得到∠ABC=∠CDN.由角平分線性質(zhì)得到∠ABE=∠FDN,進(jìn)一步得到∠ABE=∠GDE,由三角形內(nèi)角和定理可得結(jié)論.
(2)連接DB.由四邊形ABCD內(nèi)角和為360°及鄰補(bǔ)角定義,可得到∠MBC+∠CDN=180°.由角平分線性質(zhì)得到∠CBF+∠CDE=90°,進(jìn)一步得到∠EDB+∠DBF=180°,由平行線的判定可得結(jié)論.
(3)延長(zhǎng)DC交BE于H.先求出∠CDE+∠CBE,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求解即可.
詳解: (1) BE⊥DF .證明如下:
延長(zhǎng)BE、FD交于G.在四邊形ABCD中,∵∠A+∠ABC+∠C+∠ADC=360°,∠A=∠C=90°,∴∠ABC+∠ADC=180°.
又∵∠ADC+∠CDN=180°,∴∠ABC=∠CDN.
∵BE平分∠ABC,DF平分∠CDN,∴∠ABE=∠ABC,∠FDN=∠CDN,∴∠ABE=∠FDN.
又∵∠FDN=∠GDE,∴∠ABE=∠GDE.
又∵∠AEB=∠GED,∴∠A=∠G=90°,∴BE⊥DF.
(2)DE∥BF.證明如下:
連接DB.∵∠ABC+∠MBC=180°,∠ADC+∠CDN=180°.
又∵∠ABC+∠ADC=180°,∴∠MBC+∠CDN=180°.
∵BF、DE平分∠ABC、∠ADC的鄰補(bǔ)角,∴∠CBF=∠MBC,∠CDE=∠CDN,∴∠CBF+∠CDE=90°.
在Rt△BDC中,∵∠CDB+∠DBC=90°,∴∠CDB+∠DBC+∠CBF+∠CDE=180°,∴∠EDB+∠DBF=180°,∴DE∥BF.
(3)延長(zhǎng)DC交BE于H.由(1)得:∠CDN+∠CBM=180°.∵BE、DE分別五等分∠ABC、∠ADC的外角,∴∠CDE+∠CBE=×180°=36°,由三角形的外角性質(zhì)得,∠BHD=∠CDE+∠E,∠BCD=∠BHD+∠CBE,∴∠BCD=∠CBE+∠CDE+∠E,∴∠E=90°﹣36°=54°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】石墨烯被認(rèn)為是一種未來(lái)革命性的材料,它是一種由碳原子構(gòu)成的納米材料.其中每?jī)蓚(gè)相鄰碳原子間的鍵長(zhǎng)為0.000000000142米,將0.000000000142科學(xué)記數(shù)法表示為( 。
A.0.142×10﹣9B.1.42×10﹣10C.1.42×10﹣11D.0.142×10﹣8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A.必然發(fā)生的事件發(fā)生的概率為1B.不可能發(fā)生的事件發(fā)生的概率為0
C.隨機(jī)事件發(fā)生的概率介于0和1之間D.不確定事件發(fā)生的概率為0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列調(diào)查:
①了解某批種子的發(fā)芽率 ②了解某班學(xué)生對(duì)“社會(huì)主義核心價(jià)值觀”的知曉率
③了解某地區(qū)地下水水質(zhì) ④了解七年級(jí)(1)班學(xué)生參加“開放性科學(xué)實(shí)踐活動(dòng)”完成次數(shù)
適合采取全面調(diào)查的是( )
A.①③B.②④C.①②D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫圖并填空:如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn).
(1)將△ABC向左平移8格,再向下平移1格.請(qǐng)?jiān)趫D中畫出平移后的△A′B′C′
(2)利用網(wǎng)格在圖中畫出△ABC的中線CD,高線AE;
(3)△A′B′C′的面積為_____.
(4)在平移過程中線段BC所掃過的面積為 .
(5)在右圖中能使的格點(diǎn)P的個(gè)數(shù)有 個(gè)(點(diǎn)P異于A).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)了三角形的角平分線后,遇到下列4個(gè)問題,請(qǐng)你幫他解決.如圖,在△ABC中,∠BAC= 50°,點(diǎn)I是∠ABC、∠ACB平分線的交點(diǎn).
問題(1):填空:∠BIC=_________°.
問題(2):若點(diǎn)D是兩條外角平分線的交點(diǎn),則∠BDC=_________°.
問題(3):若點(diǎn)E是內(nèi)角∠ABC、外角∠ACG的平分線的交點(diǎn),則∠BEC與∠BAC的數(shù)量關(guān)系是________;
問題(4):在問題(3)的條件下,當(dāng)∠ACB等于__________°時(shí),CE∥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移后得△DEF,使點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.
(1)畫出△DEF;
(2)連接AD、BE,則線段AD與BE的關(guān)系是 ;
(3)求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示:∠AOB的內(nèi)部有一點(diǎn)P,到頂點(diǎn)O的距離為5cm,M、N分別是射線OA、OB上的動(dòng)點(diǎn).若∠AOB =30,則△PMN周長(zhǎng)的最小值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com