【題目】如圖,頂點為M的拋物線y=ax2+bx+3與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C
(1)求拋物線的表達式;
(2)在直線AC的上方的拋物線上,有一點P(不與點M重合),使△ACP的面積等于△ACM的面積,請求出點P的坐標;
(3)在y軸上是否存在一點Q,使得△QAM為直角三角形?若存在,請直接寫出點Q的坐標:若不存在,請說明理由.
【答案】(1)y=﹣x2+2x+3;(2)點P的坐標為:(2,3);(3)存在,點Q的坐標為:(0,1)或(0,3)或(0,)或(0,﹣)
【解析】
(1)拋物線的表達式為:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;
(2)過點M作直線m∥AC,在AC下方作等距離的直線n,直線n與拋物線交點即為點P,即可求解;
(3)分AM時斜邊、AQ是斜邊、MQ是斜邊三種情況,分別求解即可.
解:(1)拋物線的表達式為:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),
故﹣3a=1,解得:a=﹣1,
故拋物線的表達式為:y=﹣x2+2x+3;
(2)過點M作直線m∥AC,直線m與拋物線交點即為點P,
設直線m的表達式為:y=﹣x+b,
點M(1,4),則直線m的表達式為:y=﹣x+5,
聯立方程組,
解得:x=1(舍去)或2;
故點P的坐標為:(2,3);
(3)設點Q的坐標為:(0,m),而點A、M的坐標分別為:(3,0)、(1,4);
則AM2=20,AQ2=9+m2,MQ2=(m﹣4)2+1=m2﹣8m+17;
當AM時斜邊時,則20=9+m2+m2﹣8m+17,解得:m=1或3;
當AQ是斜邊時,則9+m2=20+ m2﹣8m+17,解得m=;
當MQ是斜邊時,則m2﹣8m+17=20+9+m2,解得m=﹣,
綜上,點Q的坐標為:(0,1)或(0,3)或(0,)或(0,﹣)
科目:初中數學 來源: 題型:
【題目】如圖,已知∠XOY=60°,點A在邊OX上,OA=2.過點A作AC⊥OY于點C,以AC為一邊在∠XOY內作等邊三角形ABC,點P是△ABC圍成的區(qū)域(包括各邊)內的一點,過點P作PD∥OY交OX于點D,作PE∥OX交OY于點E.設OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+mx+n經過點B(6,1),C(5,0),且與y軸交于點A.
(1)求拋物線的表達式及點A的坐標;
(2)點P是y軸右側拋物線上的一點,過點P作PQ⊥OA,交線段OA的延長線于點Q,如果∠PAB=45°.求證:△PQA∽△ACB;
(3)若點F是線段AB(不包含端點)上的一點,且點F關于AC的對稱點F′恰好在上述拋物線上,求FF′的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AD、BD是⊙O的弦,BC是⊙O的切線,切點為B,OC∥AD,BA、CD的延長線相交于點E.
(1)求證:DC是⊙O的切線;
(2)若AE=1,ED=3,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按擬定的價格進行試銷,通過對5天的試銷情況進行統計,得到如下數據:
(1)通過對上面表格中的數據進行分析,發(fā)現銷量y(件)與單價(元/件)之間存在一次函數關系,求y關于的函數關系式(不需要寫出函數自變量的取值范圍);
(2)預計在今后的銷售中,銷量與單價仍然存在(2)中的關系,且該產品的成本是20元/件.為使工廠獲得最大利潤,該產品的單價應定為多少?
(3)為保證產品在實際試銷中銷售量不得低于30件,且工廠獲得得利潤不得低于400元,請直接寫出單價的取值范圍;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為1的正三角形OAP沿χ軸方向連續(xù)翻轉若干次,點P依次落在點P1,P2,P3,…,P2018的位置,則點P2018的橫坐標為( 。
A.2016B.2017C.2018D.2019
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角三角形ABC中,∠ACB=90°,D、E是邊AB上兩點,且CE所在直線垂直平分線段AD,CD平分∠BCE,BC=2,則AB=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】王某承包了甲、乙兩片荒山,各栽了100棵楊梅樹,現已全部掛果,為了分析收成情況,他分別從兩山上各采摘了4棵樹上的全部楊梅,每棵樹的產量如折線統計圖.
(1)分別計算甲、乙兩山樣本的平均數,并估計出甲、乙兩山楊梅的產量總和;
(2)試通過計算說明,哪個山上的楊梅產量較穩(wěn)定?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com