【題目】為了落實(shí)黨中央提出的惠民政策,我市今年計(jì)劃開(kāi)發(fā)建設(shè)AB兩種戶型的廉租房40套.投入資金不超過(guò)200萬(wàn)元,又不低于198萬(wàn)元.開(kāi)發(fā)建設(shè)辦公室預(yù)算:一套A廉租房的造價(jià)為5.2萬(wàn)元,一套B廉租房的造價(jià)為4.8萬(wàn)元.

1)請(qǐng)問(wèn)有幾種開(kāi)發(fā)建設(shè)方案?

2)哪種建設(shè)方案投入資金最少?最少資金是多少萬(wàn)元?

3)在(2)的方案下,為了讓更多的人享受到惠民政策,開(kāi)發(fā)建設(shè)辦公室決定通過(guò)縮小廉租房的面積來(lái)降低造價(jià)、節(jié)省資金.每套A戶型廉租房的造價(jià)降低0.7萬(wàn)元,每套B戶型廉租房的造價(jià)降低0.3萬(wàn)元,將節(jié)省下來(lái)的資金全部用于再次開(kāi)發(fā)建設(shè)縮小面積后的廉租房,如果同時(shí)建設(shè)AB兩種戶型,請(qǐng)你直接寫(xiě)出再次開(kāi)發(fā)建設(shè)的方案.

【答案】1)共有6種方案;(2)當(dāng)x=15時(shí),W最小,此時(shí)W最小=0.4×15+192=198萬(wàn)元.

3)再建設(shè)方案:①A型住房1套,B型住房3套;②A型住房2套,B型住房2套;③A型住房3套,B型住房1套.

【解析】

1)設(shè)建設(shè)Ax套,B型(40x)套,然后根據(jù)投入資金不超過(guò)200萬(wàn)元,又不低于198萬(wàn)元列出不等式組,求出不等式組的解集,再根據(jù)x是正整數(shù)解答.

2)設(shè)總投資W元,建設(shè)Ax套,B型(40x)套,然后根據(jù)總投資等于A、B兩個(gè)型號(hào)的投資之和列式函數(shù)關(guān)系式,再根據(jù)一次函數(shù)的增減性解答.

3)設(shè)再次建設(shè)A、B兩種戶型分別為a套、b套,根據(jù)再建設(shè)的兩種戶型的資金等于(2)中方案節(jié)省的資金列出二元一次方程,再根據(jù)ab都是正整數(shù)求解即可.

解:(1)設(shè)建設(shè)Ax套,則B型(40x)套,

根據(jù)題意得,,

解不等式得,x≥15;解不等式得,x≤20

不等式組的解集是15≤x≤20

∵x為正整數(shù),∴x=15、1617、1819、20

答:共有6種方案.

2)設(shè)總投資W萬(wàn)元,建設(shè)Ax套,則B型(40x)套,

W=5.2x+4.8×40x=0.4x+192

∵0.40,

∴Wx的增大而增大.

當(dāng)x=15時(shí),W最小,此時(shí)W最小=0.4×15+192=198萬(wàn)元.

3)設(shè)再次建設(shè)A、B兩種戶型分別為a套、b套,

則(5.20.7a+4.80.3b=15×0.7+4015×0.3,整理得,a+b=4

a=1時(shí),b=3,

a=2時(shí),b=2,

a=3時(shí),b=1

再建設(shè)方案:①A型住房1套,B型住房3套;

②A型住房2套,B型住房2套;

③A型住房3套,B型住房1套.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形OABC的直角頂點(diǎn)是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸,y軸的正半軸上.OABC,DBC上一點(diǎn),BD=OA=,AB=3,∠OAB=45°,EF分別是線段OA,AB上的兩個(gè)動(dòng)點(diǎn),且始終保持∠DEF=45°.設(shè)OE=x,AF=y,則yx的函數(shù)關(guān)系式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過(guò)政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達(dá)到了3600元.

1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長(zhǎng)率;

2)若年平均增長(zhǎng)率保持不變,2019年該貧困戶的家庭年人均純收入是否能達(dá)到4200元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線y與直線yx交于A、B兩點(diǎn),點(diǎn)Pa,b)在雙曲線y上,且0a4

1)設(shè)PBx軸于點(diǎn)E,若a1,求點(diǎn)E的坐標(biāo);

2)連接PA、PB,得到△ABP,若4ab,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A11),B3,2),C2,4).

1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,直接寫(xiě)出點(diǎn)A1的坐標(biāo);

2)畫(huà)出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;

3)在(2)的條件下,求BC邊所掃過(guò)的面積.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到線段,,連接,若,則的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)、,與軸交于點(diǎn),拋物線的頂點(diǎn)軸的距離為,

1)如圖1,求拋物線的解析式;

2)如圖2,點(diǎn)為第三象限內(nèi)的拋物線上一點(diǎn),連接軸于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),連接并延長(zhǎng)交于點(diǎn),求證:

3)如圖3,在(2)的條件下,點(diǎn)為第二象限內(nèi)的拋物線上的一點(diǎn),分別連接,點(diǎn)的中點(diǎn),點(diǎn)為第二象限內(nèi)的一點(diǎn),分別連接,,,且,,若,求點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種高檔蔬菜莼菜,其進(jìn)價(jià)為16/kg.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):該商品的日銷(xiāo)售量y(kg)是售價(jià)x(/kg)的一次函數(shù),其售價(jià)、日銷(xiāo)售量對(duì)應(yīng)值如表:

售價(jià)(/)

20

30

40

日銷(xiāo)售量()

80

60

40

(1)關(guān)于的函數(shù)解析式(不要求寫(xiě)出自變量的取值范圍);

(2)為多少時(shí),當(dāng)天的銷(xiāo)售利潤(rùn) ()最大?最大利潤(rùn)為多少?

(3)由于產(chǎn)量日漸減少,該商品進(jìn)價(jià)提高了/,物價(jià)部門(mén)規(guī)定該商品售價(jià)不得超過(guò)36/,該商店在今后的銷(xiāo)售中,日銷(xiāo)售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若日銷(xiāo)售最大利潤(rùn)是864元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:

如圖(a,點(diǎn)A、B在直線l的同側(cè),要在直線l上找一點(diǎn)C,使ACBC的距離之和最小,我們可以作出點(diǎn)B關(guān)于l的對(duì)稱點(diǎn)B′,連接A B′與直線l交于點(diǎn)C,則點(diǎn)C即為所求.

1)實(shí)踐運(yùn)用:

如圖(b),已知,⊙O的直徑CD4,點(diǎn)A ⊙O 上,∠ACD=30°,B 為弧AD 的中點(diǎn),P為直徑CD上一動(dòng)點(diǎn),則BP+AP的最小值為

2)知識(shí)拓展:

如圖(c),在Rt△ABC中,AB=10∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,EF分別是線段ADAB上的動(dòng)點(diǎn),求BE+EF的最小值,并寫(xiě)出解答過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案