【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,AC=DB.
(1)求證:AD=BC;
(2)若E,F,G,H分別是AB,CD,AC,BD的中點,求證:線段EF與線段GH互相平分.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)由平行四邊形的性質易得AC=BM=BD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性質得出結論;
(2)連接EH,HF,FG,GE,E,F,G,H分別是AB,CD,AC,BD的中點,易得四邊形HFGE為平行四邊形,由平行四邊形的性質及(1)結論得HFGE為菱形,易得EF與GH互相垂直平分.
證明:(1)過點B作BM∥AC交DC的延長線于點M,如圖1,
∵AB∥CD
∴四邊形ABMC為平行四邊形.
∴AC=BM=BD,∠BDC=∠M=∠ACD.
在△ACD和△BDC中,
,
∴△ACD≌△BDC(SAS),
∴AD=BC;
(2)連接EH,HF,FG,GE,如圖2,
∵E,F,G,H分別是AB,CD,AC,BD的中點,
∴HE∥AD,且HE=AD,FG∥AD,且FG=,
∴四邊形HFGE為平行四邊形,
由(1)知,AD=BC,
∴HE=EG,
∴HFGE為菱形,
∴EF與GH互相垂直平分.
科目:初中數學 來源: 題型:
【題目】某商品現在售價為每件60元,每星期可賣出300件,市場調查反映:調整價格,每件漲價1元,每星期要少賣出10件;每件降價1元,每星期可多賣出20件.已知商品的進價為每件40元.
(1)設每件降價x元,每星期的銷售利潤為y元;
① 請寫出y與x之間的函數關系式;
② 確定x的值,使利潤最大,并求出最大利潤;
(2)若漲價x元,則x= 元時,利潤y的最大值為 元(直接寫出答案,不必寫過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某蔬菜有限公司一年四季都有大量新鮮蔬菜銷往全國各地,近年來它的蔬菜產值不斷增加,2014年蔬菜的產值是640萬元,2016年產值達到1000萬元.
(1)求2015年、2016年蔬菜產值的平均增長率是多少?
(2)若2017年蔬菜產值繼續(xù)穩(wěn)定增長(即年增長率與前兩年的年增長率相同),那么請你估計2017年該公司的蔬菜產值達到多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,分析下列五個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結論有________個。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于點D,點O是AC邊上一點,連接BO交AD于F,OE⊥OB交BC邊于點E.
(1)求證:△ABF∽△COE;
(2)當O為AC邊中點, 時,如圖2,求的值;
(3)當O為AC邊中點, 時,請直接寫出的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班將舉行“數學知識競賽”活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:
請根據上面的信息,解決問題:
(1)試計算兩種筆記本各買了多少本?
(2)請你解釋:小明為什么不可能找回68元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將平行四邊形 ABCD 沿對角線 BD 折疊,使點 A 落在A′處,若∠1=∠2=50°,則∠A′的度數為( )
A.100°B.105°C.110°D.115°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,如圖1,將線段AB平移至線段CD,連接AC、BD.
(1)已知A(﹣3,0)、B(﹣2,﹣2),點C在y軸的正半軸上,點D在第一象限內,且三角形ACO的面積是6,求點C、D的坐標;
(2)如圖2,在平面直角坐標系中,已知一定點M(1,0),兩個動點E(a,2a+1)、F(b,﹣2b+3).
①請你探索是否存在以兩個動點E、F為端點的線段EF平行于線段OM且等于線段OM,若存在,求出點E、F兩點的坐標;若不存在,請說明理由;
②當點E、F重合時,將該重合點記為點P,另當過點E、F的直線平行于x軸時,是否存在△PEF的面積為2?若存在,求出點E、F兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com