【題目】如圖所示,已知△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長線上,sin B=,D30°

(1)求證AD是⊙O的切線;

(2)若AC=6,求AD的長.

【答案】(1) 證明見解析; (2)

【解析】試題分析:1)要證明ADO的切線,只要證明OAD=90°即可;
2)根據(jù)已知可得AOC是等邊三角形,從而得到OA=AC=6,則可以利用勾股定理求得AD的長.

解:(1) 如圖所示,連接OA.∵sin B=,∴∠B=30°,∴∠AOC=60°.∵∠D=30°,∴∠OAD=180°-∠D-∠AOD=90°.∴AD是⊙O的切線. 

(2)∵OA=OC,∠AOC=60°,∴△AOC是等邊三角形.∴OA=AC=6.∵∠OAD=90°,∠D=30°,∴AD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.

(1)求證:BD=CD;

(2)請判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在4×4正方形的網(wǎng)格中,線段AB,CD如圖位置,每個(gè)小正方形的邊長都是1.

(1)求出線段AB、CD的長度;
(2)在圖中畫出線段EF,使得EF=,并判斷以ABCD,EF三條線段組成的三角形的形狀,請說明理由;

3)我們把(2)中三條線段按照點(diǎn)E與點(diǎn)C重合,點(diǎn)F與點(diǎn)B重合,點(diǎn)D與點(diǎn)A重合,這樣可以得ABC,則點(diǎn)C到直線AB的距離為______(直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)是點(diǎn)在點(diǎn)的右側(cè),且到點(diǎn)的距離是18;點(diǎn)在點(diǎn)與點(diǎn)之間,且到點(diǎn)的距離是到點(diǎn)距離的2.

(1)點(diǎn)表示的數(shù)是____________;點(diǎn)表示的數(shù)是_________;

(2)若點(diǎn)P從點(diǎn)出發(fā),沿?cái)?shù)軸以每秒4個(gè)單位長度的速度向右勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為秒,在運(yùn)動(dòng)過程中,當(dāng)為何值時(shí),點(diǎn)P與點(diǎn)Q之間的距離為6?

(3)在(2)的條件下,若點(diǎn)P與點(diǎn)C之間的距離表示為PC,點(diǎn)Q與點(diǎn)B之間的距離表示為在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻使得?若存在,請求出此時(shí)點(diǎn)表示的數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在ABCD中,對角線ACBD相交于點(diǎn)OABAC,AB=3cm,BC=5cm.點(diǎn)PA點(diǎn)出發(fā)沿AD方向勻速運(yùn)動(dòng)速度為lcm/s,連接PO并延長交BC于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為ts)(0t5

1)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形?

2)設(shè)四邊形OQCD的面積為ycm2),當(dāng)t=4時(shí),求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點(diǎn)B的坐標(biāo)為(3,3),直線CD交直線OA于點(diǎn)D,直線OE交線段ABE,且CD⊥OE,垂直為點(diǎn)F,若圖中陰影部分的面積是正方形OABC的面積的,則△OFC的周長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(﹣1y1),(2,y2),在反比例函數(shù)y=﹣的圖象上,則下列關(guān)系式正確的是( 。

A.y3y2y1B.y2y3y1

C.y3y1y2D.y2y1y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一批進(jìn)價(jià)為20/件的日用商品,第一個(gè)月,按進(jìn)價(jià)提高50%的價(jià)格出售,售出400件;第二個(gè)月,商店準(zhǔn)備在不低于原售價(jià)的基礎(chǔ)上進(jìn)行加價(jià)銷售,根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會導(dǎo)致銷售量的減少.銷售量y()與銷售單價(jià)x()的關(guān)系如圖所示.

(1)yx之間的函數(shù)表達(dá)式;

(2)第二個(gè)月的銷售單價(jià)定為多少元時(shí),可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,互為相反數(shù),且,、互為倒數(shù),數(shù)軸上表示的點(diǎn)距原點(diǎn)的距離恰為6個(gè)單位長度.

a= .

⑵求的值.

查看答案和解析>>

同步練習(xí)冊答案